
Advanced Exploitation of 
Simple Bugs

A Parallels Desktop Case Study 
(Pwn2Own2021)

Alisa Esage 
Zero Day Engineering Project

Livestream 2021



About me
● Offensive Vuln Research & Advanced Exploits

○ Browsers, Kernels, Basebands, Hypervisors...
○ Hard targets for profit
○ Bug bounties for fun
○ Vendor acknowledgements: Microsoft, Google, 

Mozilla, Oracle… 
○ Phrack author

● Pwn2Own 2021 Virtualization winner 
○ Parallels Desktop for Mac

● Zero Day Engineering Project – Training & 
Intelligence http://zerodayengineering.com 

○ Training & mini-classes
○ R&D

http://zerodayengineering.com


At Pwn2Own Vancouver 2021 I have 

demonstrated an 0day VM escape exploit 

for Parallels Desktop hypervisor. The 

exploit chain that I developed was based 

on logic issues. In this deep technical 

presentation I will share the technical 

details of the exploit, as well as 

various preliminary and contextual 

knowledge related to it.

Logic security vulnerabilities (i.e. 

those that can be exploited without any 

memory corruptions) are becoming 

increasingly important in offensive 

security research right now, as Rust and 

other memory-safe programming languages 

are rapidly taking over popular code 

bases. When evaluating the attack surface 

of Parallels Desktop, as an expert in 

both hypervisors and memory corruption 

bugs, I saw many opportunities for 

classical buffer overflows, but chose to 

try and find a logic bug instead. As 

hypervisors are ultra-complex low level 

software, exploitable logic bugs in them 

are extremely rare. I was lucky to find 

such a “one of a kind” bug.

Despite the bug was quite simple, the 

exploit turned out to be not so easy. 

Exploitation of the bug required me to 

develop a kernel module for the guest OS 

from which I was escaping, 

reverse-engineer some internal RPC 

protocol of the hypervisor, and emulate 

it in the exploit code. Eventually the 

exploit was reliable 100% by design, and 

executed arbitrary code on the host Mac.

During the Pwn2Own competitions it came 

as a surprize that my exploit did not 

meet any collisions with other 

competition entries. Because the bug 

itself was quite easy, I expected that at 

least one participant would find and 

utilize it independently in their own 

Pwn2Own exploit. But it didn’t happen. 

That made me aware of the fact that a bug 

that looks easy does not necessarily 

imply an easy discovery or an easy 

exploitation process, an estimation which 

is very important for strategic aspects 

of offensive security research.

https://zerodayengineering.com
/livestream/index.html 

https://zerodayengineering.com/livestream/index.html
https://zerodayengineering.com/livestream/index.html


Agenda

● Relevant Theory 
○ Hypervisor Threat Model
○ Guest Services
○ Protocols & Tech

● Parallels Desktop 
○ Architecture & Internals
○ Parallels Toolgate RE
○ Guest Additions

● The Bug 
● The ExploitAll materials in this presentation are 

based on the author’s own independent 
work, views and analysis



Part 1

Relevant Theory





Hypervisor Threat Model

Host modules Guest services Virtualized devices VMM

Interfaces

MMU virtualization

Shadow PTE

Nested page tables

Buses

USB

PCI

Peripherals

Emulated devices

Paravirtualized

CPU virtualization

ISA emulation

vAPIC

Graphics

3D/2D acceleration

Shaders

Rich functionality

Shared folders

Shared everything

Privileged drivers

Hypercall interface

Hardware VMX

Etc.

Inter-VM networking

Printing services

Hypercall interface Extensions protocols

UHCI, OHCI, 
xHCI, eHCI

Classical models: 
E1000, Virtio, DEC...

Hypercall 
handlers

VM escapesLocal EoP

DHCP, TFPT, PXE 
boot, zero-conf 

Synthetic models, 
hypercall-based IO

Note on hardware 
virtualization support

MYTH ALERT

Technological 
m

ess



Attack surface

Host modules Guest services Virtualized devices VMM

Interfaces

MMU virtualization

Shadow PTE

Nested page tables

Buses

USB

PCI

Peripherals

Emulated devices

Paravirtualized 

CPU virtualization

ISA emulation

vAPIC

Graphics

3D/2D acceleration

Shaders

Rich functionality

Shared folders

Shared everything

Privileged drivers

Hypercall interface

Hardware VMX

Etc.

Inter-VM networking

Printing services

Hypercall interface Extensions protocol



Guest services architecture (example: GL)

VMM

Emulated and para 
devices

Guest services (backend)

Hypercall interface kernel 
module

GA: 3d 
graphics 

hooks

GA: file 
system 
hooks

User
app

System
API

Hypervisor VMHW

GPU

Users



RPC protocols



Guest additions / Virtualization tools



Part 2

Parallels Desktop



Parallels Desktop Architecture vs. The Model

Host modules Guest services Virtualized devices VMM

Interfaces

MMU virtualization

Shadow PTE

Nested page tables

Buses

USB

PCI

Peripherals

Emulated devices

Paravirtualized

CPU virtualization

ISA emulation

vAPIC

Graphics

3D/2D acceleration

Shaders

Rich functionality

Shared folders

Shared everything

Privileged drivers

Hypercall interface

Hardware VMX

Etc.

Inter-VM networking

Printing services

Hypercall interface Extensions protocols

VM escapesLocal EoP



parallels_symbolize.py



Parallels research tip: verbose debug logs



Parallels virtual hardware



init_devices



Parallels emulated devices



Parallels Toolgate



Parallels Tools & Toolgate



Toolgate protocol 



Part 3

The Bug



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-Engineering Parallels Toolgate



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Toolgate Request Handlers



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Parallels Shared Folders



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Parsing SF hypercalls



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

The Bug



Part 4

The Exploit



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

prl_fs



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Prl_fs guest <> hypervisor



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

SF protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reaching the bug



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Not so easy… 



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

prl_pwn kernel module



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

prl_pwn kernel module (imports)



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-engineering the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-engineering the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-engineering the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-engineering the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-engineering the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Reverse-engineering the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

prl_pwn.py



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Toolgate protocol primitives – user side



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Toolgate protocol primitives – hypervisor side



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Talking to the hypervisor



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Emulating the protocol



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Execute payload



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

VMware shared folders (CVE-2007-1744)
● Directory traversal
● Implementation uses 

MultiByteToWideChar() API
● Path sanitization is bypassed 

by injecting a unicode ‘..’ 
substring as 
“%c0%2e%c0%2e”

CVE-2008-0923: directory 
traversal #2

● Improperly patched 
CVE-2007-1744

● Path sanitization is bypassed 
by injecting 
“0xc20x2e0xc20x2e” 

Literally the first case study slide 
in my training “Hypervisor 
Vulnerability Research”...



ze
ro

da
ye

ng
in

ee
ri
ng

.c
om

Thank you
Twitter: @alisaesage
Email: contact@zerodayengineering.com

https://twitter.com/alisaesage
mailto:contact@zerodayengineering.com

