Zero Day
Engineering

training & intelligence

Zero Day Engineering LLC
http://zerodayengineering.com

HYPERVISOR
VULNERABILITY
RESEARCH

TRAINING OVERVIEW

This professional deep technical training offers a systematical foundation for low-level security research
of arbitrary hypervisor systems, taught from an offensive security research perspective by an acclaimed
hacker specialized in the subject. Key objectives: threat modeling, vulnerability discovery and prototyping.

Conceptually, course materials are structured around the hypervisor master threat model, which
distinguishes 4 major subsystems / attack surfaces in any modern hypervisor; each day is focused on
one. We expose students to all the essential theory required to attack a particular hypervisor subsystem,
as well as fundamental practical skills, attack vectors and previously discovered security vulnerabilities in
each subsystem. Furthermore, a hacker's review of four popular hypervisor implementations is included.

All exercises and labs in this training course are based on real life tasks, and target essential vulnerability
research skills. Training materials are updated and refreshed prior to each live class. 32 hours of study.

AUDIENCE

This training is primarily intended for professional
security researchers and virtualization systems
engineers.

Materials of this training constitute an essential
base of knowledge for an effective zero day
vulnerability researcher targeting any hypervisor
implementation.

Training approach and materials are suitable for
complete beginners with application security and
hypervisors.

PREREQUISITES

Essential:
e C/C++(reading level);
e Linux command line and build environment.
Recommended:
e X86_64 assembly language;
e some experience with vulnerability research;
» basic OS and hardware design concepts.

PLAN

Day 1. Foundation.
Virtualization technology fundamentals. Virtual
machine guest services. Oracle VirtualBox.

Day 2. Virtual hardware.
Virtual devices subsystem. OS & hardware design
theory. VMware Workstation.

Day 3. Paravirtualization.
Hardware virtualization technology. Hypercalls and
paravirtualized devices. Microsoft Hyper-V.

Day 4. Hypervisor core.
Virtual Machine Monitor (VMM). CPU & MMU theory.
Linux KVM.

LEVELS & CERTIFICATION

Complexity: intermediate.

Certificate grade: CODE3 (Vulnerability Research).
Next level training: "Advanced Hypervisor
Exploitation”.

TRAINING DETAILS

All modern hypervisor systems share a common foundation of conceptual models: design models, threat
models, virtual hardware models - that may be abstracted away from the technical details of a particular
implementation. Key principle of this training is to introduce the students to vulnerability research in
arbitrary hypervisors through the perspective of their common abstractions, while leveraging
implementation-specific technical case studies and the author's many-year experience in operating
systems introspection and vulnerability research to facilitate practical applications.

The subject of this training - system internals, vulnerability patterns and trends - represents an essential
basis for all offensive and defensive workflows in software security production: such as vulnerability
discovery, exploit development, secure systems design, writing safe code and security auditing, as well
as ensuring good decisions with 3rd party products selection, deployment and integration in security-
critical environments.

The structure of this training is an even mix of theoretical and hands-on experience. Training materials are
systematically designed, with each training day focused on one common subsystem of a hypervisor, and
divided into four self-contained two-hour blocks that cover relevant theoretical concepts, threat models
and attack vectors, known vulnerability patterns and trends, and key technical details of several popular
hypervisor implementations.

Exercises in this training are based on suitable real-life tasks and specially crafted with time management
techniques in order to enable accelerated learning of skills and internalization of extensive knowledge.
Practical environments are based mostly on static source code analysis with occasional binary analysis
and debugging labs.

Knowledge presented in this training is based on independent technical research and reverse engineering
work done by the author herself, and illustrated with security vulnerabilities discovered by the author, as
well as with publicly available sources. Training materials are updated prior to each training session to
incorporate important public advancements in the field and new technological developments.

This training is primarily focused on four popular hypervisor implementations: Oracle VirtualBox, VMware
Workstation, Microsoft Hyper-V, and Linux KVM. Other virtualization and emulation systems, though not
discussed in a dedicated manner, are occasionally featured in specific vulnerability case studies.

ABOUT THE INSTRUCTOR

Alisa Esage is a professional low-level code breaker, vulnerability
researcher and reverse engineer. She was credited by Microsoft,
Google, Firefox, Oracle, Schneider Electric, and other leading
software vendors for discovery of previously unknown security
bugs. She is specialized on attacking popular and hardened
software and firmware implementations for exploit development.

For several years Alisa focused on modern virtualization security
and system internals, working on discovery and exploitation of
vulnerabilities in multiple popular hypervisors. In the process she
developed a deeply generalized perspective on attacking modern
hypervisors, which forms the basis of this training. Alisa is the winner
of Pwn20wn 2021 competition in the Virtualisation category.

LEARNING OBJECTIVES

Upon completion of this training class the students are expected to have obtained the following
knowledge and skills:

* A deeply systematical and generalized perspective on virtualization systems design and internals;

* Recap of the relevant theoretical concepts from operating systems theory, hardware design and
application security;

o Familiarity with key implementation-level peculiarities and general design of several major hypervisor
products, both open source and proprietary;

» Knowledge of the classes, patterns and trends of software vulnerabilities which are specific to
hypervisors, based on deep technical details of several dozens of real-life case studies, and an
overview of the publicly exposed vulnerability history;

« Fundamental practical skills of vulnerability discovery and prototyping in large and popular code
bases, based on modern toolsets and the author's personal playbook;

» Ability to discover previously unknown vulnerabilities in arbitrary hypervisor software systems;

» Ability to prototype a known hypervisor vulnerability based on a security patch;

» A deep sense of trends and future developments in hypervisor security research.

HARDWARE & SOFTWARE REQUIREMENTS

All students are required to prepare their own lab and exercise environment for the class.

Hardware and software requirements:
1. Productivity-grade laptop or a desktop computer with a modern HVT-enabled chipset (either Intel
VT-x or AMD-V).
2.A modern Linux OS installation, either:
a. A modern Linux native installation, or
b. A modern Linux virtual machine with nested virtualization enabled (see Notes).
3. A professional disassembler.
4. An advanced IDE with C/C++ syntax intelligence.

Notes:

* Hands-on labs were tested on Ubuntu Linux 20.04 LTS x64. In case of a different Linux platform flavor,
the student would be responsible to specialize the build instructions and introspection guides to it.

e Linux environment will be utilized (among other things) to build VirtualBox and run a virtual machine in
the self-build. Unless Linux is running on bare metal, that would require nested virtualization
enablement in the base hypervisor.

» Majority of modern desktop hypervisors support HVT pass-through ("nested virtualization") on both
Intel and AMD chipsets, which is required for option 2b. Software recommendations for the latter
option: VirtualBox, VMware Workstation, Parallels Desktop.

TRAINING PACKAGES & FEES

This training is available in several formats: live and self-paced, public and private, and various package
options.

Online and on-demand (self-paced) trainings are based on a modern streaming platform with high-quality
audio and video, and a group chat. The instructor will be available for questions, feedback and technical
support, according to the conditions of the specific package.

Payments through the website are subject to merchant fees, that can be waived by paying directly via
bank transfer or with crypto currencies.

LIVE TRAINING SELF-PACED TRAINING

View-only access Basic package

What's included: What's included:
e Access to public online training. » Video lectures, exercises, and walk-through.
» Guaranteed instructor's feedback by email. e Training slides and materials.
e Training slides and materials. » Training completion certificate.

e Training completion certificate.
Price: €2,500.- per person.
Price: €3,900.- per person.
Complete package
Interactive access
What's included:

What's included: e Everything in the Basic package.
» Everything in the View-only option. * One month of technical support by email.
e Feedback and technical support from the e An on demand personal consultation with the
instructor in real time during the training. instructor by video call.
« A possibility to receive a Training Achievement
certificate by undergoing an assessment. Price: €4,100.- per person.
Price: €4,100.- per person. Note: Self-paced packages are recordings of our
live online training. Videos can be viewed on-
Note: Limited number of seats for the Interactive demand through a streaming platform (no offline
access option. access, except for the slides).

PRIVATE & CUSTOMIZED TRAINING

Minimal private group size is 10 persons. Contact us to check availability.

LIVE TRAINING DATES & BOOKING

Refer to our website for the dates of the nearest public class.

All our online training courses are offered exclusively at the Zero Day Engineering project
(zerodayengineering.com).

Contact us directly for all the bookings and purchases.

http://zerodayengineering.com/
http://zerodayengineering.com/contact.html

TRAINING
PROGRAM

DAY 1. FOUNDATION

1.1. Virtualization 101.

Virtualization technology flavors. Emulation, binary
translation, recompilation, raw execution,
sandboxing, hardware assisted virtualization. Bare-
metal and hosted hypervisors. Hypervisor
subsystems: VMM, virtual devices, guest services,
hypercall interfaces. Modern trends in
development and implementation of hypervisors.

Agenda:
« History of virtualization technology.
» Virtualization technology landscape.
+ Terminology and technologies.
o General design model of a hypervisor.
e Threat models, attack surfaces and attack
vectors.

Exercise: investigate a popular implementation of
a virtualization system in source code.

Target skill: initial orientation in a large source
code base.

1.2. Guest services subsystem.

Rich virtualization functionality: shared folders,
clipboards, smart cards. Drag-and-drop, virtual
printer, memory ballooning. Hardware accelerated
3d & 2d graphics and graphic shaders, GPU
virtualization, OpenGL and DirectX pass-through.
Networking services: DHCP, TFTP, zero-conf, PXE
boot. NAT, virtual LAN, inter-VM networking.

Agenda:
» Overview and functions of guest services.
¢ Relevant OS theory.
* Implementation options.
» Threat models and attack vectors.
e Common security issues.

Exercise: investigate an implementation of guest
services in source code.

Target skill: identifying and navigating a specific
subsystem in a large code base.

1.3. Attacking guest services.

Agenda:
+ Threat models and attack vectors.
e Principles of fuzzing and static analysis.
» Examples of known vulnerabilities in guest
services.

Exercise: security patch analysis based on source
code.

Target skill: identifying and understanding a security
vulnerability by analyzing source code modifications.

1.4. VirtualBox implementation.

Agenda:
¢ Overview of design and implementation.
e Guest additions / virtualization tools.
» Building instructions.
e Security research trends.
e Case study: 3d graphics subsystem.

Exercise: find as many bugs as you can in the given
attack vector by static analysis.

Target skill: basic vulnerability discovery by pattern-
based static analysis in source code.

DAY 2. VIRTUAL HARDWARE

2.1. OS & hardware theory.

CPU privilege modes, the kernel and loadable
kernel modules, kernel-userland interfaces.
Common classes of computer hardware;
processing units, SoCs, buses, peripherals.
Fundamental hardware concepts: registers, BARs,
I/0, interrupt and transfer management. PIO,
MMIO, DMA. FIFO buffers (queues), FILO buffers
(stacks), ring buffers, transfer descriptors,
interrupts and polling. Device driver functions,
skeleton and top-level algorithm.

Agenda:
e OS and hardware ABC.
» Hardware-software boundary and interfaces.
» PCl bus specification.
» USB bus and Host Controller Interfaces.
¢ Intel 8254xxx (E1000) ethernet controller
model.

Lab: live hypervisor introspection.
 Inspecting virtual hardware from within a guest
Os.
« Debugging a hypervisor.
e Testing attack vectors.

2.2. Anatomy of a Linux device driver.

Common logical blocks of a Linux kernel module.
Device driver specifics. "OPS and OS callbacks.
Probe function, device initialization and set up,
operation routines. Common callback structures:
struct pci_driver, usb_driver, drm_driver. Common
hardware resource management primitives:
ioremap, pci_", dma_", and their Linux subsystems.

Agenda:
e Linux kernel module skeleton and building
blocks.
¢ Kernel management hooks.
» Kernel-userland interfaces.
e Resource management primitives.
» Probe function.

Exercise: creating a vulnerability proof-of concept
from a binary security patch, part 1: analysis of a
virtual device driver in source code.

2.3. Attacking virtual devices.

Types of virtual devices: purely emulated devices,
paravirtualized devices, pass-through, combined
models. Common issues: bugs in PIO/MMIO/DMA
handling, bugs in parsing of internal command
protocols, unsanitized values in transmit descriptors.
Integer and buffer overflows, race conditions,
TOCTTOU.

Agenda:
» Threat models and attack vectors.
¢ Research landscape and trends.
» Vulnerability case studies.

Exercise: creating a vulnerability proof-of concept
from a binary security patch, part 2; binary
vulnerability patch analysis.

Target skill: effective binary patch analysis of an
unfamiliar component in a proprietary code base.

2.4. VMware Workstation.

The vmx process, the Backdoor interface, emulated
device models. The vmx configuration file,
undocumented configuration parameters, useful
settings. VMware-specific SVGA and VMCI virtual
devices.

Agenda:

» Design and implementation overview.

¢ Guest additions and virtualization tools.
Research platform set up instructions and tips.
« Advanced configuration.
e Security research trends.
e Case study: VMware SVGA device.

Exercise: creating a vulnerability proof-of-concept
from a binary security patch, part 3: analysis of the
virtual device implementation, mapping the
vulnerability to software, and contemplating the
testcase algorithm.

Target skill. generalizing from a low-level
vulnerability view to virtual hardware model and
virtual device driver, and putting it all together to
create a proof-of-concept.

DAY 3. PARAVIRTUALIZATION

3.1. Hardware virtualization technology.

Overview of Intel VT-x, EPT, and AMD-V
virtualization extensions implementations. VMX
root operation, VMX non-root operation, VM exit,
VM entry, VMCS.

Agenda:
¢ Intel VT-x: basic concepts.
 Virtual Machine Control Structure (VMCS).
e Programming a hypervisor.
¢ The hypervisor execution loop.

Exercise: analyze a hardware-assisted hypervisor
implementation in source code.

Skill: identifying ultra-specialized low-level
functionality in a large code base.

3.2. Hypercalls & paravirtualization.

Hypercall interface implementations: legacy -
CPU instruction interception, synthetic emulated

device; modern - HVT-based. Paravirtualization vs.

emulation. Shared memory and synthetic
interrupts.

Agenda:

* Alegacy hypercall implementation case study.

* A modern hypercall implementation case
study:.

» Paravirtualization vs. emulation.

¢ The shared memory paravirtualization
interface.

e Para-protocols.

Exercise: investigate a modern HVT-based
hypercall implementation in source code of a
hypervisor driver and theoretical specifications.

3.3. Attacking hypercalls & paravirtualization.

Agenda:
e Threat models and attack vectors.
e« Common issues.
e Fuzzing hypercalls.
« Vulnerability case studies.

Exercise: theoretical analysis of a relevant real-life

vulnerability and mapping it to hypervisor drivers,
Target skill. deduce a particular vulnerability
technical details, practical context and research
implications from a brief public mention.

3.4. Microsoft Hyper-V implementation.

The hypervisor (hvix64.exe/hvax64.exe), the
hypercall interface, the VMBUS. Root partition, child
partitions, enlightened and unmodified guest OS,
Generation 1 and Generation 2 virtual machines.
Emulated and paravirtualized hardware
components. Enhanced session mode and the
Remote Desktop Services (RDP) infrastructure.
VSP/VSC hypervisor driver model, Linux Integration
Services and Microsoft Windows Hyper-V drivers.
VBS (Virtualization Based Security), WMI (scripting),
the Hypervisor API.

Agenda:
e Design and implementation overview.
» Attack surfaces and attack vectors.
» Attack surface reduction in practice.
» Research platform set up.
e Security research trends and tips.
e Case study: Virtual Network Switch.

Exercise: analyze a paravirtualized device driver for
purposes of fuzzing.

Target skill. conceptual modeling of a custom
specialized fuzzer implementation.

DAY 4. VMM
4.1. CPU & MMU theory.

CPU ISA basics, interrupts and exceptions.
Privileged and unprivileged CPU execution modes.
Special instructions with respect to virtualization
requirements. Conditional and unconditional VM-
exits. x86_64: CPUID, GETSEC, INVD, XSETBV. MSR
and CRx registers. Pipelines, prefetching, and
optimization. MMU hardware operation overview.
Paging modes: 32-bit, PAE, 4-level. PML4E, PDPTE,
PDE, PTE.

Agenda:
» CPU design and operation software theory.
e Memory address translation process.
¢ OS kernel management of CPU & MMU
hardware operation.

Exercise: theoretical analysis of a VM exit and CPU
instruction emulation in source code.

4.2. Virtual Machine Monitor subsystem.

CPU & MMU virtualization in practice. Full CPU
emulation, special instruction emulation, partial
pass-through of instruction functionality, CPU
instruction interception. HVT, binary translation
and interception-based handling of special
instructions in practice. Virtual MMU: shadow page
tables, nested page tables and hardware-assisted
MMU virtualization technology (EPT).

» Legacy (software-based) and modern
(hardware-assisted) CPU virtualization
techniques.

e Legacy and modern MMU virtualization
techniques.

» Common VMM designs in practice.

Exercise: theoretical analysis of an MMU
virtualization implementation in source code.

4.3. Attacking the VMM,

Common attack vectors: CPU instruction
emulation, VM exit handling, nested VMX
emulation. Common classes of issues: design
issues due to mishandled hardware specification;

memory corruptions in instruction emulation;
memory page table updates and shadowing
sanitization issues. Speculative execution bugs.

Agenda:
* Threat models and attack vectors.
« Offensive research trends.
« Vulnerability case studies.

Exercise; analysis of a speculative execution bug and
exploit.

Skill: rapid grasping of a low-level attack concept;
paradigm shift from vulnerability discovery to exploit
engineering.

4.4. Linux KVM implementation.

Agenda:
» Design and implementation overview.
+ KVM API and notable consumers.
e Security research trends.
¢ Implementation deep dive.

Exercise: create a proof-of-concept testcase for a
VM-escape vulnerability based on a security patch in
source code, and crash VirtualBox.

Note: the training agenda may experience minor
changes that won't impact expected outcomes of
the training.

What's new in 2022

e Analysis of VMware bugs from TianfuCup 2020 &
2021 (USB HC).

o USB OHCI/UHCI/EHCI/xHCI theory (briefly).

* VMware Workstation - version 16 updates; MKS
sandbox, debugging & RE tips, other new stuff.

» VirtualBox - recently patched vulnerabilities case
studies (reverse engineered from patches).

e Hyper-V - technical updates.

Note: the new content is available in live training
only - not included in the self-paced package yet.

WHAT TO EXPECT?

Quoted below are anonymized extracts of private feedback from our students with their subjective
impressions that may help prospective attendees to better understand the training experience.

"It was empowering. Not only did | feel like | learned an enormous amount, but by the end | felt confident |
knew how to start looking for real vulnerabilities in virtualization systems.”

"I'had an amazing time in the training. | feel like a lot of the knowledge | had was clarified in the training
and is now more organized. Of course | also learned a lot of new stuff and it was really interesting and
useful.”

"Itis a well written training, both the materials/slides and exercises are all well designed. | also really
appreciated the knowledge you showed in the training, it is clear you have a lot of experience in
hypervisor research and it was great to learn from you."

"| feel like the fact that a big part of the training was to show how to research and explain your
methodology was really good, it was useful to learn how to approach a problems/research objective
when it comes to different attack vectors.”

"I really like the more technical parts - e.g. different 10 options, how hardware virtualization works, OS
ABC, MMU virtualization, | found them more interesting than the specifics of a certain hypervisor. Also
liked the part where you compare different vulnerability types, and how the type recent vulnerabilities
indicate the kind of scrutiny a project has seen.”

"l learned thatl finding bugs in virtualization systems is achievable. Before doing this course hypervisor
exploitation seemed like an unknowable thing that was just "too hard". | don't have anyone in my
professional network or friend groups that knows anything about it, and information online is scarce.
Learning from your course, and especially performing the exercises, has given me the confidence to dive
in and start looking for bugs.”

"The processes and workflows that you demonstrated. Particularly during your walkthroughs of the
exercises, it was incredibly valuable to see and hear your own methodology for completing each
example. The exercises themselves where also a fantastic learning tool."

"Here is what | loved about the whole thing:
« Well organized content, with a good order of things.
» A decent balance of theory and hands-on (I'm probably biased to hands-on).
* Pomodoro, time boxing, neural net.. liked the meta-learning touch there.
» Discussions on threat models, vuln discovery strategies, potential fuzzing designs.”

"Loved the 25 minutes exercises, really intense and gets you involved’
Additional public reviews from our students can be found on our website and social channels.

FURTHER INQUIRIES

E-mail: contact@zerodayengineering.com
Note: we typically respond to all business e-mails within 1-2 business days. In case of any communication
issues, we are on Signal: +1(707)505-93-43 and Telegram: @zerodayengineering.

https://zerodayengineering.com/training/feedback.html

RESERVED FOR NOTES

CHANGE LOG

09.01.2024. Price increased for Complete package due to instructor's availability; conditions and links are
updated.

05.12.2023. Self-paced packages changed.

12.05.2022. Agenda update - new content of 2022.

24.08.2022. Minor updates (style).

22.09.2022. Design (new logo).

