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Reality check
Google is continuously fuzzing its own software products using a broad 
array of professionally maintained state-of-the-art fuzzers on a 
distributed fuzzing cloud with tens of thousands fuzzing instances 

(more?)

Researchers consistently come up with new 0-days in v8 and Chrome

And they find it by… fuzzing?!



Smart Fuzzing
🚫 Not necessarily:

● Scaling
● Parallelization
● Code coverage guidance
● Augmenting with concolic execution
● Using the latest cool tool
● Assisting fuzzing with specialized 

hardware features
● …

✅ Ultimately, it comes down to: 

1. Knowledge from First Principles

Know exactly what you’re doing - 
and how it works - theoretical side

2. Sound application in context 

Leverage (1) to win adversarial 
games - practical/technical aspects

Ex. You spent three months writing a custom coverage-guided fuzzer and it didn’t 
find any bugs in time budget. Meanwhile, your friend wrote a “dumb” specialized 
fuzzer in a day and found a bug to win the contest in an hour. Who fuzzed smarter? 



Part I. First Principles of Fuzzing



Enter Probability Theory
Probability & ops

Given a random variable x:

p(𝑥) ∈ [0..1]: x = 𝑥

Joint probability for independent variables:

∀ 𝑥 ∈ x, 𝑦 ∈ y: p(y=𝑦, x=𝑥) = p(x=𝑥)p(y=𝑦)

Conditional probabilities:

p(y=𝑦|x=𝑥) = p(y=𝑦, x=𝑥) / p(x=𝑥) 

Chain rule:

p(x1 ,x2 ,…,xn ) = p(x1)∏
n
i=2p(xn|x1 ,x2 ,…,xn-1)

Probability Distribution

PMF:

1. Dom(P): {x:𝑥i}, i ∈ k
2. ∀𝑥 ∈ x, 0 ≤ P(𝑥) ≤ 1
3. ∑P(𝑥) = 1*

Ex. Uniform PD:

p(x=𝑥i) = 1/k

* normalised



Examples of common probability distributions



Modeling fuzzing of a simple program

Program:

1. Accept one 
byte as 
input: x

2. If x = 42, 
print a 
message

3. Else if x = 0, 
proceed to 
vuln

4. Other inputs 
are invalid

5. Random 
fuzzing 
perspective

Input vector

x=42 x=0

Then:
1. Probabilities:
- p(x=42) = 1/256 = 

0.039 (3.9%)
- p(x=0) = 1/256 = 

0.039 (3.9%)
2. Success rate:
- 255/2 failures on 

average 
- 1/127 ~ 0.0079 

(0.79%)
3. Error rate:
- r ~ 1-0.0079 ~ 

0.9921 (99.21%)
4. Timing: 100 cps ~> 

1 sec to vuln



Vs. program’s perspective

Program:

1. Accept one 
byte as 
input: x

2. If x = 42, 
print a 
message

3. Else if x = 0, 
proceed to 
vuln

4. Other inputs 
are invalid

5. Program’s 
perspective

Input vector

x=42 x=0

Then:
1. Probabilities:
- p(x=42) = 0.5 

(50%)
- p(x=0) = 0.5 (50%)

2. Success rate:
- 100% (not 

applicable)
3. Error rate:
- 0 (not applicable)



Modeling a more complex program

IV

Then:
1. Probabilities:
- p(x1=42, x2=0) = 

1/256*1/256 = 
0.001521 (0.15%)

- compounding
2. Error rate
- r ~ 99.85%
- Keeps growing up 

the tree
3. Overall trend
- exponential loss 

due to path 
explosion + 
diminishing 
probabilities

x0
p = 0.039

x1
x2
p = 0.001521

Program:

1. Accept an 
array of 10 
bytes

2. Single bytes 
are tested

3. If x[0] = 42 
AND x[2] = 
0, proceed to 
vuln

4. Random 
fuzzing of 
each byte



Analytic: Behavior of a simple random fuzzer

IV

Then:
1. Tiny probability on 

each branch
- p(x1=42) ~ 1/25610 

~ 1/280

2. Compounding: 
- p(x1=42, x2=0) ~ 

1/280 * 1/280 ~ 
1/2160 

3. Probability of 
reaching deeper 
branches with a 
fuzzer rapidly 
drops to 0

x0
p = ½^80

x1
x2
p = ½^160

Program fuzzing:

1. Accept an array 
of 10 bytes

2. Random fuzzing 
of the array 

3. If x[0] = 42 
AND x[2] = 0, 
proceed to vuln

4. Else done



Analytic: Behavior of a simple random fuzzer

IV

Then:
1. Tiny probability on 

each branch
- p(x1=42) ~ 1/25610 

~ 1/280

2. Compounding: 
- p(x1=42, x2=0) ~ 

1/280 * 1/280 ~ 
1/2160 

3. Probability of 
reaching deeper 
branches with a 
fuzzer rapidly 
drops to 0

x0
p = ½^80

x1
x2
p = ½^160

Program fuzzing:

1. Accept an array 
of 10 bytes

2. Random fuzzing 
of the array 

3. If x[0] = 42 
AND x[2] = 0, 
proceed to vuln

4. Else done

Note: Here, probabilities are exaggerated by assuming the worst case scenario, that 
entire 80-bit array is randomly fuzzed and tested as one big number. In practice, 
probabilities will depend on a number of variables: specific fuzzing algorithm, width 
of values tested on branches, offset of each value into the array, and so on. 

My goal with this is to show two key points:
1) in real life non-deterministic fuzzing the probabilities of advancing into the 
program tree are terrible, and 
2) just how much the probabilities can vary from the “ideal model”, depending on the 
specific fuzzing algorithm and other factors; and therefore, how steep the 
exponential path explosion curve can possibly get with an arbitrary choice of fuzzing 
techniques.



Analytic: Behavior of a simple random fuzzer

Then:
1. Tiny probability on 

each branch
- p(x1=42) = 1/25610 

= 1/280

2. Compounding: 
- p(x1=42, x2=0) = 

1/280 * 1/280 = 
1/2160 

3. Probability of 
reaching deeper 
branches with a 
fuzzer rapidly 
drops to 0

x0
p = ½^80

x1
x2
p = ½^160

unreachable

IV



Analytic: Behavior of a cov guided fuzzer
1 - branch discovery phase

IV

Then:
1. Still low 

probability of 
discovering each 
branch

2. Still 99%+ error rate 
and growing 
through the tree

3. Saving successful 
branch-passing 
inputs allows to 
control the path 
explosion and 
overall 
exponential loss

x1

Assume that 
fuzzer is smart 
enough to fuzz 
specific byte that 
controls the 
branch so we don’t 
get diminishing 
probabilities from 
fuzzing a very 
large number (not 
a real example - 
currently available 
SOTA fuzzers can’t 
do it) 

x0
p = 0.039

x2
p = 0.001521



Analytic: Behavior of a cov guided fuzzer
2 - known branch fuzzing phase

IV

Then:
1. Probabilities are 

improved!  
- Saving a sample sets 

p=1 on the branch
- Further probabilities 

compound slower
2. Cost is ~linear 

rather than 
exponential!

3. Stable trend of vuln 
discovery (assuming 
a uniform 
distribution of bugs)

4. Still 99%+++ 
error rate

x0
p = 1

x1
x2
p = 0.039



“I wonder, what my smart fuzzer is doing…”

Popular opinion

“Walking in the forest of 
program paths, intelligently 
discovering new branches ☺” 

Reality

Burning electricity while 
producing heat 99+% of the 
time 🤥



Part II. The Forest of Probabilities



Fuzzing actors as Probability Distributions
Fuzzer

Pf

1. Over time a fuzzer will 
generate a finite* set 
of discrete values

2. Algorithm imposes 
constraints on 
possible values of 
values and their 
probabilities

3. Fuzzer = PD:

* limited by program’s input width
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Fuzzing actors as Probability Distributions
Program

Pp

1. Set of valid inputs
2. Valid input: pass at 

least one conditional 
branch

3. Algorithm imposes 
constraints on 
possible values of 
input and their 
probabilities

4. Program = PD:

Vuln.

Pv

1. A strict subset of Pp
2. Specific values of 

program inputs that 
lead to vulnerabilities

3. PD:

Fuzzer

Pf

1. Over time a fuzzer will 
generate a finite* set 
of discrete values

2. Algorithm imposes 
constraints on 
possible values of 
values and their 
probabilities

3. Fuzzer = PD:

* limited by program’s input width



Pf



Pp



Pv



Fundamental Challenge of Fuzzing

Goal: Pf = Pv

SOTA: Pf ⊅ Pp ⊃ Pv

Secondary goal: r = 0

(follows from Pf = Pv)

SOTA: r = 99%+↑



Modeling fuzzing as a process (rough idea)

Fuzzing is a function:

R = F(Pf)

R: practical measure of “success” of specific input values

Optimization: 

R’ = Opt(R, Pp) -> Opt(R, Pb) -> Opt(R, Pv)

Pf = F-1(R’)



Solve Fuzzing (Pf = Pv)*
1. Pf → Pp

Idea: bring the set of fuzzer 
inputs closer to the set valid 
program inputs

Insight: fuzzer’s losses are 
exponential in discovery 
phase and linear past it. Here 
we aim for latter stage 
upfront

* is a hard problem, so we also look for less ambitious and more trackable solutions 
in practice. 

The probabilistic model has many solutions. Here as an example, I show four 
“partial” solutions that can be trivially illustrated with my own past fuzzing 
experiments.
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proof)
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Solve Fuzzing (Pf = Pv)*
2.  Pp → 0

Idea: minimize the set of 
valid program inputs

Insight: Random fuzzing 
with small P_p is more 
efficient than smart 
coverage-guided fuzzing of 
the entire program (todo: 
proof)

4.  Pf → 1

Idea: Collapse it (theoretical)

Insight: manifestation ???

3.  Pf → Pv

Idea: let the fuzzer “learn” 
from past bugs

Insight: this always “tends” 
with a gap: eg, next bug is a 
novel one - unseen 
previously. The gap is an 
opportunity in itself

* is a hard problem, so we also look for less ambitious and more trackable solutions 
in practice. 

The probabilistic model has many solutions. Here as an example, I show four 
“partial” solutions that can be trivially illustrated with my own past fuzzing 
experiments.

1. Pf → Pp

Idea: bring the set of fuzzer 
inputs closer to the set valid 
program inputs

Insight: fuzzer’s losses are 
exponential in discovery 
phase and linear past it. Here 
we aim for latter stage 
upfront



Reality check

~100% of software security bugs exploited at Pwn2Own Vancouver 
2024 were found with manual program analysis

Meaning: for purposes of adversarial offensive security research, fuzzing is so bad 
that researchers don’t even try it?

Actually, use of scrappy custom ultra specialized fuzzers is common in these 
scenarios (optimizing P_f intuitively), a bug will look like a manual find in this case. 
But researchers normally won’t publish it because it isn’t considered “smart fuzzing”. 



Case studies



Summary: concrete examples of F improvement

1. Pf → Pp

Idea: bring the set of fuzzer 
inputs closer to the set valid 
program inputs

Examples: 

- Mutate valid program 
inputs. (radamsa)

- Generate valid inputs 
with context free 
grammars. (dharma)

- Reuse existing parser 
code to gen F inputs.*

- Coverage feedback 
(afl, winafl, libfuzzer)

* Similar to genai, where the 
originally analytical model is 
reversed to produce outputs.

2.  Pp → 0

Idea: minimize the set of 
valid program inputs

Examples:

- Cut out a piece of code and 
fuzz it separately of the entire 
program.

- Hook into a the code to 
isolate fuzzing of a specific 
portion. (frida)

- Use one particular valid 
input as a fuzzing template  
to isolate a specific portion of 
the program tree as a target.

4.  Pf → 1

Idea: Collapse it (theoretical 
solution)

3.  Pf → Pv

Idea: let the fuzzer “learn” 
from past bugs

Examples:

- Take one of past bugs, 
reuse it as a fuzzing 
template. 

Note, this is a crude 'fuzzer' 
that has a very small P_f ~ 
P_v for one specific vuln.

- Reuse the corpus of 
past bugs by feeding it 
into the fuzzer as input 
corpus.

Side note: much of this 
has been empirically 
discovered by the fuzzing 
community over many 
years of practical 
research, and 
implemented in various 
tools and best practices, 
which validates this 
theoretical model!   

Time to start thinking 
forward from the model to 
guide new fuzzing 
improvements, rather 
than stumble on them 
empirically and intuitively.



Model applications: from basics to advanced
High level

Scale: Probability Distributions

Goal: Pf → Pv

Ex.(Idea) Quantify the difference between 
PDs -> cost function -> optimization 
algorithm over fuzzing procedures or 
fuzzer code 

Low level

Scale: Branch/instruction

Goal: max(p) | min(r) 

Ex.(Idea) Find a way to make fuzzer 
aware of width and/or position of 
condition value on a branch => higher 
probability of finding the value => faster 
branch discovery + lower error rate



Conclusions
1. Fuzzing from First Principles enables us to compete with large scale 

“smart” fuzzing; it doesn’t have to be manual analysis
2. Coverage guided and scaled fuzzing is ok for long-running projects 

with little or no constraints - ex: part of dev cycle (but still very far 
from reasonable in current SOTA)

3. Cov guided and scaled fuzzing seems to be a bad choice in 
adversarial games of offensive security (0-days, competitions, bug 
bounties)

4. Improve Pf  instead of glossing over the failure scaling madness
5. Start thinking forward from the theoretical model to guide 

advancements in fuzzing, rather than stumble on 
improvements empirically and intuitively in practice.
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