
Fuzzing from First
Principles

Alisa Esage
Zero Day Engineering LLC

Off By One Security Podcast, September 2024

About me
Alisa Esage Шевченко*

Independent Vulnerability Researcher (2014+)

● Mostly low-level stuff, Hypervisors & Browsers
● Non-trivial exploit development <3
● First Female Winner of Pwn2Own contest (2021)

Professional Reverse Engineer since The Age of Empires II

● RE baseband & iOS bootloader most recently

Solo Entrepreneur & Community Leadership (2009+)

● Co-founded the First hackerspace in Russia (~2011)
● Zero Day Engineering project (2021+)

https://zerodayengineering.com < SOTA training for
professional security researchers

* Russian citizen, Ukrainian surname :(

Presenting these slides at Off By One Security
Podcast on 14th September 2024. Random
screen courtesy of podcast host Stephen Sims.
This stream reached a record number of live
viewers!!

Watch the video recording here:
https://www.youtube.com/watch?v=9U-FK_Qi
1XQ

https://zerodayengineering.com
https://www.youtube.com/watch?v=9U-FK_Qi1XQ
https://www.youtube.com/watch?v=9U-FK_Qi1XQ

Reality check
Google is continuously fuzzing its own software products using a broad
array of professionally maintained state-of-the-art fuzzers on a
distributed fuzzing cloud with tens of thousands fuzzing instances

(more?)

Researchers consistently come up with new 0-days in v8 and Chrome

And they find it by… fuzzing?!

Smart Fuzzing
🚫 Not necessarily:

● Scaling
● Parallelization
● Code coverage guidance
● Augmenting with concolic execution
● Using the latest cool tool
● Assisting fuzzing with specialized

hardware features
● …

✅ Ultimately, it comes down to:

1. Knowledge from First Principles

Know exactly what you’re doing -
and how it works - theoretical side

2. Sound application in context

Leverage (1) to win adversarial
games - practical/technical aspects

Ex. You spent three months writing a custom coverage-guided fuzzer and it didn’t
find any bugs in time budget. Meanwhile, your friend wrote a “dumb” specialized
fuzzer in a day and found a bug to win the contest in an hour. Who fuzzed smarter?

Part I. First Principles of Fuzzing

Enter Probability Theory
Probability & ops

Given a random variable x:

p(𝑥) ∈ [0..1]: x = 𝑥

Joint probability for independent variables:

∀ 𝑥 ∈ x, 𝑦 ∈ y: p(y=𝑦, x=𝑥) = p(x=𝑥)p(y=𝑦)

Conditional probabilities:

p(y=𝑦|x=𝑥) = p(y=𝑦, x=𝑥) / p(x=𝑥)

Chain rule:

p(x1 ,x2 ,…,xn) = p(x1)∏
n
i=2p(xn|x1 ,x2 ,…,xn-1)

Probability Distribution

PMF:

1. Dom(P): {x:𝑥i}, i ∈ k
2. ∀𝑥 ∈ x, 0 ≤ P(𝑥) ≤ 1
3. ∑P(𝑥) = 1*

Ex. Uniform PD:

p(x=𝑥i) = 1/k

* normalised

Examples of common probability distributions

Modeling fuzzing of a simple program

Program:

1. Accept one
byte as
input: x

2. If x = 42,
print a
message

3. Else if x = 0,
proceed to
vuln

4. Other inputs
are invalid

5. Random
fuzzing
perspective

Input vector

x=42 x=0

Then:
1. Probabilities:
- p(x=42) = 1/256 =

0.039 (3.9%)
- p(x=0) = 1/256 =

0.039 (3.9%)
2. Success rate:
- 255/2 failures on

average
- 1/127 ~ 0.0079

(0.79%)
3. Error rate:
- r ~ 1-0.0079 ~

0.9921 (99.21%)
4. Timing: 100 cps ~>

1 sec to vuln

Vs. program’s perspective

Program:

1. Accept one
byte as
input: x

2. If x = 42,
print a
message

3. Else if x = 0,
proceed to
vuln

4. Other inputs
are invalid

5. Program’s
perspective

Input vector

x=42 x=0

Then:
1. Probabilities:
- p(x=42) = 0.5

(50%)
- p(x=0) = 0.5 (50%)

2. Success rate:
- 100% (not

applicable)
3. Error rate:
- 0 (not applicable)

Modeling a more complex program

IV

Then:
1. Probabilities:
- p(x1=42, x2=0) =

1/256*1/256 =
0.001521 (0.15%)

- compounding
2. Error rate
- r ~ 99.85%
- Keeps growing up

the tree
3. Overall trend
- exponential loss

due to path
explosion +
diminishing
probabilities

x0
p = 0.039

x1
x2
p = 0.001521

Program:

1. Accept an
array of 10
bytes

2. Single bytes
are tested

3. If x[0] = 42
AND x[2] =
0, proceed to
vuln

4. Random
fuzzing of
each byte

Analytic: Behavior of a simple random fuzzer

IV

Then:
1. Tiny probability on

each branch
- p(x1=42) ~ 1/25610

~ 1/280

2. Compounding:
- p(x1=42, x2=0) ~

1/280 * 1/280 ~
1/2160

3. Probability of
reaching deeper
branches with a
fuzzer rapidly
drops to 0

x0
p = ½^80

x1
x2
p = ½^160

Program fuzzing:

1. Accept an array
of 10 bytes

2. Random fuzzing
of the array

3. If x[0] = 42
AND x[2] = 0,
proceed to vuln

4. Else done

Analytic: Behavior of a simple random fuzzer

IV

Then:
1. Tiny probability on

each branch
- p(x1=42) ~ 1/25610

~ 1/280

2. Compounding:
- p(x1=42, x2=0) ~

1/280 * 1/280 ~
1/2160

3. Probability of
reaching deeper
branches with a
fuzzer rapidly
drops to 0

x0
p = ½^80

x1
x2
p = ½^160

Program fuzzing:

1. Accept an array
of 10 bytes

2. Random fuzzing
of the array

3. If x[0] = 42
AND x[2] = 0,
proceed to vuln

4. Else done

Note: Here, probabilities are exaggerated by assuming the worst case scenario, that
entire 80-bit array is randomly fuzzed and tested as one big number. In practice,
probabilities will depend on a number of variables: specific fuzzing algorithm, width
of values tested on branches, offset of each value into the array, and so on.

My goal with this is to show two key points:
1) in real life non-deterministic fuzzing the probabilities of advancing into the
program tree are terrible, and
2) just how much the probabilities can vary from the “ideal model”, depending on the
specific fuzzing algorithm and other factors; and therefore, how steep the
exponential path explosion curve can possibly get with an arbitrary choice of fuzzing
techniques.

Analytic: Behavior of a simple random fuzzer

Then:
1. Tiny probability on

each branch
- p(x1=42) = 1/25610

= 1/280

2. Compounding:
- p(x1=42, x2=0) =

1/280 * 1/280 =
1/2160

3. Probability of
reaching deeper
branches with a
fuzzer rapidly
drops to 0

x0
p = ½^80

x1
x2
p = ½^160

unreachable

IV

Analytic: Behavior of a cov guided fuzzer
1 - branch discovery phase

IV

Then:
1. Still low

probability of
discovering each
branch

2. Still 99%+ error rate
and growing
through the tree

3. Saving successful
branch-passing
inputs allows to
control the path
explosion and
overall
exponential loss

x1

Assume that
fuzzer is smart
enough to fuzz
specific byte that
controls the
branch so we don’t
get diminishing
probabilities from
fuzzing a very
large number (not
a real example -
currently available
SOTA fuzzers can’t
do it)

x0
p = 0.039

x2
p = 0.001521

Analytic: Behavior of a cov guided fuzzer
2 - known branch fuzzing phase

IV

Then:
1. Probabilities are

improved!
- Saving a sample sets

p=1 on the branch
- Further probabilities

compound slower
2. Cost is ~linear

rather than
exponential!

3. Stable trend of vuln
discovery (assuming
a uniform
distribution of bugs)

4. Still 99%+++
error rate

x0
p = 1

x1
x2
p = 0.039

“I wonder, what my smart fuzzer is doing…”

Popular opinion

“Walking in the forest of
program paths, intelligently
discovering new branches ☺”

Reality

Burning electricity while
producing heat 99+% of the
time 🤥

Part II. The Forest of Probabilities

Fuzzing actors as Probability Distributions
Fuzzer

Pf

1. Over time a fuzzer will
generate a finite* set
of discrete values

2. Algorithm imposes
constraints on
possible values of
values and their
probabilities

3. Fuzzer = PD:

* limited by program’s input width

Fuzzing actors as Probability Distributions
Program

Pp

1. Set of valid inputs
2. Valid input: pass at

least one conditional
branch

3. Algorithm imposes
constraints on
possible values of
input and their
probabilities

4. Program = PD:

Fuzzer

Pf

1. Over time a fuzzer will
generate a finite* set
of discrete values

2. Algorithm imposes
constraints on
possible values of
values and their
probabilities

3. Fuzzer = PD:

* limited by program’s input width

Fuzzing actors as Probability Distributions
Program

Pp

1. Set of valid inputs
2. Valid input: pass at

least one conditional
branch

3. Algorithm imposes
constraints on
possible values of
input and their
probabilities

4. Program = PD:

Vuln.

Pv

1. A strict subset of Pp
2. Specific values of

program inputs that
lead to vulnerabilities

3. PD:

Fuzzer

Pf

1. Over time a fuzzer will
generate a finite* set
of discrete values

2. Algorithm imposes
constraints on
possible values of
values and their
probabilities

3. Fuzzer = PD:

* limited by program’s input width

Pf

Pp

Pv

Fundamental Challenge of Fuzzing

Goal: Pf = Pv

SOTA: Pf ⊅ Pp ⊃ Pv

Secondary goal: r = 0

(follows from Pf = Pv)

SOTA: r = 99%+↑

Modeling fuzzing as a process (rough idea)

Fuzzing is a function:

R = F(Pf)

R: practical measure of “success” of specific input values

Optimization:

R’ = Opt(R, Pp) -> Opt(R, Pb) -> Opt(R, Pv)

Pf = F-1(R’)

Solve Fuzzing (Pf = Pv)*
1. Pf → Pp

Idea: bring the set of fuzzer
inputs closer to the set valid
program inputs

Insight: fuzzer’s losses are
exponential in discovery
phase and linear past it. Here
we aim for latter stage
upfront

* is a hard problem, so we also look for less ambitious and more trackable solutions
in practice.

The probabilistic model has many solutions. Here as an example, I show four
“partial” solutions that can be trivially illustrated with my own past fuzzing
experiments.

Solve Fuzzing (Pf = Pv)*
2. Pp → 0

Idea: minimize the set of
valid program inputs

Insight: Random fuzzing
with small P_p is more
efficient than smart
coverage-guided fuzzing of
the entire program (todo:
proof)

* is a hard problem, so we also look for less ambitious and more trackable solutions
in practice.

The probabilistic model has many solutions. Here as an example, I show four
“partial” solutions that can be trivially illustrated with my own past fuzzing
experiments.

1. Pf → Pp

Idea: bring the set of fuzzer
inputs closer to the set valid
program inputs

Insight: fuzzer’s losses are
exponential in discovery
phase and linear past it. Here
we aim for latter stage
upfront

Solve Fuzzing (Pf = Pv)*
2. Pp → 0

Idea: minimize the set of
valid program inputs

Insight: Random fuzzing
with small P_p is more
efficient than smart
coverage-guided fuzzing of
the entire program (todo:
proof)

3. Pf → Pv

Idea: let the fuzzer “learn”
from past bugs

Insight: this always “tends”
with a gap: eg, next bug is a
novel one - unseen
previously. The gap is an
opportunity in itself

* is a hard problem, so we also look for less ambitious and more trackable solutions
in practice.

The probabilistic model has many solutions. Here as an example, I show four
“partial” solutions that can be trivially illustrated with my own past fuzzing
experiments.

1. Pf → Pp

Idea: bring the set of fuzzer
inputs closer to the set valid
program inputs

Insight: fuzzer’s losses are
exponential in discovery
phase and linear past it. Here
we aim for latter stage
upfront

Solve Fuzzing (Pf = Pv)*
2. Pp → 0

Idea: minimize the set of
valid program inputs

Insight: Random fuzzing
with small P_p is more
efficient than smart
coverage-guided fuzzing of
the entire program (todo:
proof)

4. Pf → 1

Idea: Collapse it (theoretical)

Insight: manifestation ???

3. Pf → Pv

Idea: let the fuzzer “learn”
from past bugs

Insight: this always “tends”
with a gap: eg, next bug is a
novel one - unseen
previously. The gap is an
opportunity in itself

* is a hard problem, so we also look for less ambitious and more trackable solutions
in practice.

The probabilistic model has many solutions. Here as an example, I show four
“partial” solutions that can be trivially illustrated with my own past fuzzing
experiments.

1. Pf → Pp

Idea: bring the set of fuzzer
inputs closer to the set valid
program inputs

Insight: fuzzer’s losses are
exponential in discovery
phase and linear past it. Here
we aim for latter stage
upfront

Reality check

~100% of software security bugs exploited at Pwn2Own Vancouver
2024 were found with manual program analysis

Meaning: for purposes of adversarial offensive security research, fuzzing is so bad
that researchers don’t even try it?

Actually, use of scrappy custom ultra specialized fuzzers is common in these
scenarios (optimizing P_f intuitively), a bug will look like a manual find in this case.
But researchers normally won’t publish it because it isn’t considered “smart fuzzing”.

Case studies

Summary: concrete examples of F improvement

1. Pf → Pp

Idea: bring the set of fuzzer
inputs closer to the set valid
program inputs

Examples:

- Mutate valid program
inputs. (radamsa)

- Generate valid inputs
with context free
grammars. (dharma)

- Reuse existing parser
code to gen F inputs.*

- Coverage feedback
(afl, winafl, libfuzzer)

* Similar to genai, where the
originally analytical model is
reversed to produce outputs.

2. Pp → 0

Idea: minimize the set of
valid program inputs

Examples:

- Cut out a piece of code and
fuzz it separately of the entire
program.

- Hook into a the code to
isolate fuzzing of a specific
portion. (frida)

- Use one particular valid
input as a fuzzing template
to isolate a specific portion of
the program tree as a target.

4. Pf → 1

Idea: Collapse it (theoretical
solution)

3. Pf → Pv

Idea: let the fuzzer “learn”
from past bugs

Examples:

- Take one of past bugs,
reuse it as a fuzzing
template.

Note, this is a crude 'fuzzer'
that has a very small P_f ~
P_v for one specific vuln.

- Reuse the corpus of
past bugs by feeding it
into the fuzzer as input
corpus.

Side note: much of this
has been empirically
discovered by the fuzzing
community over many
years of practical
research, and
implemented in various
tools and best practices,
which validates this
theoretical model!

Time to start thinking
forward from the model to
guide new fuzzing
improvements, rather
than stumble on them
empirically and intuitively.

Model applications: from basics to advanced
High level

Scale: Probability Distributions

Goal: Pf → Pv

Ex.(Idea) Quantify the difference between
PDs -> cost function -> optimization
algorithm over fuzzing procedures or
fuzzer code

Low level

Scale: Branch/instruction

Goal: max(p) | min(r)

Ex.(Idea) Find a way to make fuzzer
aware of width and/or position of
condition value on a branch => higher
probability of finding the value => faster
branch discovery + lower error rate

Conclusions
1. Fuzzing from First Principles enables us to compete with large scale

“smart” fuzzing; it doesn’t have to be manual analysis
2. Coverage guided and scaled fuzzing is ok for long-running projects

with little or no constraints - ex: part of dev cycle (but still very far
from reasonable in current SOTA)

3. Cov guided and scaled fuzzing seems to be a bad choice in
adversarial games of offensive security (0-days, competitions, bug
bounties)

4. Improve Pf instead of glossing over the failure scaling madness
5. Start thinking forward from the theoretical model to guide

advancements in fuzzing, rather than stumble on
improvements empirically and intuitively in practice.

Discussion
contact@zerodayengineering.com

@alisaesage

mailto:contact@zerodayengineering.com

