KVM
mm.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13 
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/spinlock.h>
20 
21 struct kvm_pgtable pkvm_pgtable;
23 
24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
25 unsigned int hyp_memblock_nr;
26 
27 static u64 __io_map_base;
28 
30  u64 addr;
31  kvm_pte_t *ptep;
32 };
33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
34 
35 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
36  unsigned long phys, enum kvm_pgtable_prot prot)
37 {
38  int err;
39 
41  err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
43 
44  return err;
45 }
46 
47 static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
48 {
49  unsigned long cur;
50 
52 
53  if (!start || start < __io_map_base)
54  return -EINVAL;
55 
56  /* The allocated size is always a multiple of PAGE_SIZE */
57  cur = start + PAGE_ALIGN(size);
58 
59  /* Are we overflowing on the vmemmap ? */
60  if (cur > __hyp_vmemmap)
61  return -ENOMEM;
62 
64 
65  return 0;
66 }
67 
68 /**
69  * pkvm_alloc_private_va_range - Allocates a private VA range.
70  * @size: The size of the VA range to reserve.
71  * @haddr: The hypervisor virtual start address of the allocation.
72  *
73  * The private virtual address (VA) range is allocated above __io_map_base
74  * and aligned based on the order of @size.
75  *
76  * Return: 0 on success or negative error code on failure.
77  */
78 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
79 {
80  unsigned long addr;
81  int ret;
82 
84  addr = __io_map_base;
87 
88  *haddr = addr;
89 
90  return ret;
91 }
92 
93 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
94  enum kvm_pgtable_prot prot,
95  unsigned long *haddr)
96 {
97  unsigned long addr;
98  int err;
99 
100  size = PAGE_ALIGN(size + offset_in_page(phys));
101  err = pkvm_alloc_private_va_range(size, &addr);
102  if (err)
103  return err;
104 
105  err = __pkvm_create_mappings(addr, size, phys, prot);
106  if (err)
107  return err;
108 
109  *haddr = addr + offset_in_page(phys);
110  return err;
111 }
112 
113 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
114 {
115  unsigned long start = (unsigned long)from;
116  unsigned long end = (unsigned long)to;
117  unsigned long virt_addr;
118  phys_addr_t phys;
119 
121 
122  start = start & PAGE_MASK;
123  end = PAGE_ALIGN(end);
124 
125  for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
126  int err;
127 
128  phys = hyp_virt_to_phys((void *)virt_addr);
129  err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
130  phys, prot);
131  if (err)
132  return err;
133  }
134 
135  return 0;
136 }
137 
138 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
139 {
140  int ret;
141 
143  ret = pkvm_create_mappings_locked(from, to, prot);
145 
146  return ret;
147 }
148 
149 int hyp_back_vmemmap(phys_addr_t back)
150 {
151  unsigned long i, start, size, end = 0;
152  int ret;
153 
154  for (i = 0; i < hyp_memblock_nr; i++) {
155  start = hyp_memory[i].base;
156  start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
157  /*
158  * The begining of the hyp_vmemmap region for the current
159  * memblock may already be backed by the page backing the end
160  * the previous region, so avoid mapping it twice.
161  */
162  start = max(start, end);
163 
164  end = hyp_memory[i].base + hyp_memory[i].size;
165  end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
166  if (start >= end)
167  continue;
168 
169  size = end - start;
170  ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
171  if (ret)
172  return ret;
173 
174  memset(hyp_phys_to_virt(back), 0, size);
175  back += size;
176  }
177 
178  return 0;
179 }
180 
181 static void *__hyp_bp_vect_base;
182 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
183 {
184  void *vector;
185 
186  switch (slot) {
187  case HYP_VECTOR_DIRECT: {
188  vector = __kvm_hyp_vector;
189  break;
190  }
191  case HYP_VECTOR_SPECTRE_DIRECT: {
192  vector = __bp_harden_hyp_vecs;
193  break;
194  }
195  case HYP_VECTOR_INDIRECT:
196  case HYP_VECTOR_SPECTRE_INDIRECT: {
197  vector = (void *)__hyp_bp_vect_base;
198  break;
199  }
200  default:
201  return -EINVAL;
202  }
203 
204  vector = __kvm_vector_slot2addr(vector, slot);
205  *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
206 
207  return 0;
208 }
209 
211 {
212  phys_addr_t phys;
213  unsigned long bp_base;
214  int ret;
215 
216  if (!kvm_system_needs_idmapped_vectors()) {
217  __hyp_bp_vect_base = __bp_harden_hyp_vecs;
218  return 0;
219  }
220 
221  phys = __hyp_pa(__bp_harden_hyp_vecs);
222  ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
223  PAGE_HYP_EXEC, &bp_base);
224  if (ret)
225  return ret;
226 
227  __hyp_bp_vect_base = (void *)bp_base;
228 
229  return 0;
230 }
231 
232 void *hyp_fixmap_map(phys_addr_t phys)
233 {
234  struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
235  kvm_pte_t pte, *ptep = slot->ptep;
236 
237  pte = *ptep;
238  pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
239  pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
240  WRITE_ONCE(*ptep, pte);
241  dsb(ishst);
242 
243  return (void *)slot->addr;
244 }
245 
246 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
247 {
248  kvm_pte_t *ptep = slot->ptep;
249  u64 addr = slot->addr;
250 
251  WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
252 
253  /*
254  * Irritatingly, the architecture requires that we use inner-shareable
255  * broadcast TLB invalidation here in case another CPU speculates
256  * through our fixmap and decides to create an "amalagamation of the
257  * values held in the TLB" due to the apparent lack of a
258  * break-before-make sequence.
259  *
260  * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
261  */
262  dsb(ishst);
263  __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), KVM_PGTABLE_LAST_LEVEL);
264  dsb(ish);
265  isb();
266 }
267 
269 {
270  fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
271 }
272 
273 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
274  enum kvm_pgtable_walk_flags visit)
275 {
276  struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
277 
278  if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_LAST_LEVEL)
279  return -EINVAL;
280 
281  slot->addr = ctx->addr;
282  slot->ptep = ctx->ptep;
283 
284  /*
285  * Clear the PTE, but keep the page-table page refcount elevated to
286  * prevent it from ever being freed. This lets us manipulate the PTEs
287  * by hand safely without ever needing to allocate memory.
288  */
289  fixmap_clear_slot(slot);
290 
291  return 0;
292 }
293 
294 static int create_fixmap_slot(u64 addr, u64 cpu)
295 {
296  struct kvm_pgtable_walker walker = {
298  .flags = KVM_PGTABLE_WALK_LEAF,
299  .arg = (void *)cpu,
300  };
301 
302  return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
303 }
304 
306 {
307  unsigned long addr, i;
308  int ret;
309 
310  for (i = 0; i < hyp_nr_cpus; i++) {
311  ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
312  if (ret)
313  return ret;
314 
315  ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
316  __hyp_pa(__hyp_bss_start), PAGE_HYP);
317  if (ret)
318  return ret;
319 
320  ret = create_fixmap_slot(addr, i);
321  if (ret)
322  return ret;
323  }
324 
325  return 0;
326 }
327 
328 int hyp_create_idmap(u32 hyp_va_bits)
329 {
330  unsigned long start, end;
331 
332  start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
333  start = ALIGN_DOWN(start, PAGE_SIZE);
334 
335  end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
336  end = ALIGN(end, PAGE_SIZE);
337 
338  /*
339  * One half of the VA space is reserved to linearly map portions of
340  * memory -- see va_layout.c for more details. The other half of the VA
341  * space contains the trampoline page, and needs some care. Split that
342  * second half in two and find the quarter of VA space not conflicting
343  * with the idmap to place the IOs and the vmemmap. IOs use the lower
344  * half of the quarter and the vmemmap the upper half.
345  */
346  __io_map_base = start & BIT(hyp_va_bits - 2);
347  __io_map_base ^= BIT(hyp_va_bits - 2);
348  __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
349 
350  return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
351 }
352 
353 int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
354 {
355  unsigned long addr, prev_base;
356  size_t size;
357  int ret;
358 
360 
361  prev_base = __io_map_base;
362  /*
363  * Efficient stack verification using the PAGE_SHIFT bit implies
364  * an alignment of our allocation on the order of the size.
365  */
366  size = PAGE_SIZE * 2;
367  addr = ALIGN(__io_map_base, size);
368 
369  ret = __pkvm_alloc_private_va_range(addr, size);
370  if (!ret) {
371  /*
372  * Since the stack grows downwards, map the stack to the page
373  * at the higher address and leave the lower guard page
374  * unbacked.
375  *
376  * Any valid stack address now has the PAGE_SHIFT bit as 1
377  * and addresses corresponding to the guard page have the
378  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
379  */
380  ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
381  PAGE_SIZE, phys, PAGE_HYP);
382  if (ret)
383  __io_map_base = prev_base;
384  }
386 
387  *haddr = addr + size;
388 
389  return ret;
390 }
391 
392 static void *admit_host_page(void *arg)
393 {
394  struct kvm_hyp_memcache *host_mc = arg;
395 
396  if (!host_mc->nr_pages)
397  return NULL;
398 
399  /*
400  * The host still owns the pages in its memcache, so we need to go
401  * through a full host-to-hyp donation cycle to change it. Fortunately,
402  * __pkvm_host_donate_hyp() takes care of races for us, so if it
403  * succeeds we're good to go.
404  */
405  if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
406  return NULL;
407 
408  return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
409 }
410 
411 /* Refill our local memcache by poping pages from the one provided by the host. */
412 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
413  struct kvm_hyp_memcache *host_mc)
414 {
415  struct kvm_hyp_memcache tmp = *host_mc;
416  int ret;
417 
418  ret = __topup_hyp_memcache(mc, min_pages, admit_host_page,
419  hyp_virt_to_phys, &tmp);
420  *host_mc = tmp;
421 
422  return ret;
423 }
static unsigned long cur
Definition: early_alloc.c:17
static unsigned long end
Definition: early_alloc.c:16
size_t size
Definition: gen-hyprel.c:133
int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
Definition: mem_protect.c:1152
unsigned long hyp_nr_cpus
Definition: setup.c:23
static void * hyp_phys_to_virt(phys_addr_t phys)
Definition: memory.h:20
#define hyp_phys_to_page(phys)
Definition: memory.h:32
#define hyp_phys_to_pfn(phys)
Definition: memory.h:30
u64 __hyp_vmemmap
Definition: page_alloc.c:10
static phys_addr_t hyp_virt_to_phys(void *addr)
Definition: memory.h:25
void hyp_fixmap_unmap(void)
Definition: mm.c:268
static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
Definition: mm.c:246
int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
Definition: mm.c:113
struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS]
Definition: mm.c:24
int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
Definition: mm.c:353
static void * admit_host_page(void *arg)
Definition: mm.c:392
int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, struct kvm_hyp_memcache *host_mc)
Definition: mm.c:412
hyp_spinlock_t pkvm_pgd_lock
Definition: mm.c:22
static u64 __io_map_base
Definition: mm.c:27
static int create_fixmap_slot(u64 addr, u64 cpu)
Definition: mm.c:294
int hyp_create_idmap(u32 hyp_va_bits)
Definition: mm.c:328
static int __pkvm_create_mappings(unsigned long start, unsigned long size, unsigned long phys, enum kvm_pgtable_prot prot)
Definition: mm.c:35
struct kvm_pgtable pkvm_pgtable
Definition: mm.c:21
int hyp_map_vectors(void)
Definition: mm.c:210
int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
Definition: mm.c:182
int hyp_create_pcpu_fixmap(void)
Definition: mm.c:305
int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
Definition: mm.c:138
static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
Definition: mm.c:47
static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots)
int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
Definition: mm.c:78
int hyp_back_vmemmap(phys_addr_t back)
Definition: mm.c:149
void * hyp_fixmap_map(phys_addr_t phys)
Definition: mm.c:232
unsigned int hyp_memblock_nr
Definition: mm.c:25
int __pkvm_create_private_mapping(phys_addr_t phys, size_t size, enum kvm_pgtable_prot prot, unsigned long *haddr)
Definition: mm.c:93
static void * __hyp_bp_vect_base
Definition: mm.c:181
static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit)
Definition: mm.c:273
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, struct kvm_pgtable_walker *walker)
Definition: pgtable.c:324
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, enum kvm_pgtable_prot prot)
Definition: pgtable.c:489
static void hyp_spin_unlock(hyp_spinlock_t *lock)
Definition: spinlock.h:82
static void hyp_assert_lock_held(hyp_spinlock_t *lock)
Definition: spinlock.h:122
static void hyp_spin_lock(hyp_spinlock_t *lock)
Definition: spinlock.h:44
kvm_pte_t * ptep
Definition: mm.c:31
u64 addr
Definition: mm.c:30