KVM
i8254.c
Go to the documentation of this file.
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  * Sheng Yang <sheng.yang@intel.com>
30  * Based on QEMU and Xen.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37 
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42 
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48 
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53 
54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56  struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57 
58  switch (c->mode) {
59  default:
60  case 0:
61  case 4:
62  /* XXX: just disable/enable counting */
63  break;
64  case 1:
65  case 2:
66  case 3:
67  case 5:
68  /* Restart counting on rising edge. */
69  if (c->gate < val)
70  c->count_load_time = ktime_get();
71  break;
72  }
73 
74  c->gate = val;
75 }
76 
77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79  return pit->pit_state.channels[channel].gate;
80 }
81 
82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84  s64 elapsed;
85  ktime_t remaining;
86  struct kvm_kpit_state *ps = &pit->pit_state;
87 
88  if (!ps->period)
89  return 0;
90 
91  /*
92  * The Counter does not stop when it reaches zero. In
93  * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94  * the highest count, either FFFF hex for binary counting
95  * or 9999 for BCD counting, and continues counting.
96  * Modes 2 and 3 are periodic; the Counter reloads
97  * itself with the initial count and continues counting
98  * from there.
99  */
100  remaining = hrtimer_get_remaining(&ps->timer);
101  elapsed = ps->period - ktime_to_ns(remaining);
102 
103  return elapsed;
104 }
105 
106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107  int channel)
108 {
109  if (channel == 0)
110  return __kpit_elapsed(pit);
111 
112  return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114 
115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117  struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118  s64 d, t;
119  int counter;
120 
121  t = kpit_elapsed(pit, c, channel);
122  d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123 
124  switch (c->mode) {
125  case 0:
126  case 1:
127  case 4:
128  case 5:
129  counter = (c->count - d) & 0xffff;
130  break;
131  case 3:
132  /* XXX: may be incorrect for odd counts */
133  counter = c->count - (mod_64((2 * d), c->count));
134  break;
135  default:
136  counter = c->count - mod_64(d, c->count);
137  break;
138  }
139  return counter;
140 }
141 
142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144  struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145  s64 d, t;
146  int out;
147 
148  t = kpit_elapsed(pit, c, channel);
149  d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150 
151  switch (c->mode) {
152  default:
153  case 0:
154  out = (d >= c->count);
155  break;
156  case 1:
157  out = (d < c->count);
158  break;
159  case 2:
160  out = ((mod_64(d, c->count) == 0) && (d != 0));
161  break;
162  case 3:
163  out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164  break;
165  case 4:
166  case 5:
167  out = (d == c->count);
168  break;
169  }
170 
171  return out;
172 }
173 
174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176  struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177 
178  if (!c->count_latched) {
179  c->latched_count = pit_get_count(pit, channel);
180  c->count_latched = c->rw_mode;
181  }
182 }
183 
184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186  struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187 
188  if (!c->status_latched) {
189  /* TODO: Return NULL COUNT (bit 6). */
190  c->status = ((pit_get_out(pit, channel) << 7) |
191  (c->rw_mode << 4) |
192  (c->mode << 1) |
193  c->bcd);
194  c->status_latched = 1;
195  }
196 }
197 
198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200  return container_of(ps, struct kvm_pit, pit_state);
201 }
202 
203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205  struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
207  struct kvm_pit *pit = pit_state_to_pit(ps);
208 
209  atomic_set(&ps->irq_ack, 1);
210  /* irq_ack should be set before pending is read. Order accesses with
211  * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212  */
213  smp_mb();
214  if (atomic_dec_if_positive(&ps->pending) > 0)
215  kthread_queue_work(pit->worker, &pit->expired);
216 }
217 
218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220  struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221  struct hrtimer *timer;
222 
223  /* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
224  if (vcpu->vcpu_id || !pit)
225  return;
226 
227  timer = &pit->pit_state.timer;
228  mutex_lock(&pit->pit_state.lock);
229  if (hrtimer_cancel(timer))
230  hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
231  mutex_unlock(&pit->pit_state.lock);
232 }
233 
234 static void destroy_pit_timer(struct kvm_pit *pit)
235 {
236  hrtimer_cancel(&pit->pit_state.timer);
237  kthread_flush_work(&pit->expired);
238 }
239 
240 static void pit_do_work(struct kthread_work *work)
241 {
242  struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
243  struct kvm *kvm = pit->kvm;
244  struct kvm_vcpu *vcpu;
245  unsigned long i;
246  struct kvm_kpit_state *ps = &pit->pit_state;
247 
248  if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
249  return;
250 
251  kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
252  kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
253 
254  /*
255  * Provides NMI watchdog support via Virtual Wire mode.
256  * The route is: PIT -> LVT0 in NMI mode.
257  *
258  * Note: Our Virtual Wire implementation does not follow
259  * the MP specification. We propagate a PIT interrupt to all
260  * VCPUs and only when LVT0 is in NMI mode. The interrupt can
261  * also be simultaneously delivered through PIC and IOAPIC.
262  */
263  if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
264  kvm_for_each_vcpu(i, vcpu, kvm)
266 }
267 
268 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
269 {
270  struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
271  struct kvm_pit *pt = pit_state_to_pit(ps);
272 
273  if (atomic_read(&ps->reinject))
274  atomic_inc(&ps->pending);
275 
276  kthread_queue_work(pt->worker, &pt->expired);
277 
278  if (ps->is_periodic) {
279  hrtimer_add_expires_ns(&ps->timer, ps->period);
280  return HRTIMER_RESTART;
281  } else
282  return HRTIMER_NORESTART;
283 }
284 
285 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
286 {
287  atomic_set(&pit->pit_state.pending, 0);
288  atomic_set(&pit->pit_state.irq_ack, 1);
289 }
290 
291 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
292 {
293  struct kvm_kpit_state *ps = &pit->pit_state;
294  struct kvm *kvm = pit->kvm;
295 
296  if (atomic_read(&ps->reinject) == reinject)
297  return;
298 
299  /*
300  * AMD SVM AVIC accelerates EOI write and does not trap.
301  * This cause in-kernel PIT re-inject mode to fail
302  * since it checks ps->irq_ack before kvm_set_irq()
303  * and relies on the ack notifier to timely queue
304  * the pt->worker work iterm and reinject the missed tick.
305  * So, deactivate APICv when PIT is in reinject mode.
306  */
307  if (reinject) {
308  kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
309  /* The initial state is preserved while ps->reinject == 0. */
311  kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
313  } else {
314  kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
315  kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
317  }
318 
319  atomic_set(&ps->reinject, reinject);
320 }
321 
322 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
323 {
324  struct kvm_kpit_state *ps = &pit->pit_state;
325  struct kvm *kvm = pit->kvm;
326  s64 interval;
327 
328  if (!ioapic_in_kernel(kvm) ||
329  ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
330  return;
331 
332  interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
333 
334  pr_debug("create pit timer, interval is %llu nsec\n", interval);
335 
336  /* TODO The new value only affected after the retriggered */
337  hrtimer_cancel(&ps->timer);
338  kthread_flush_work(&pit->expired);
339  ps->period = interval;
340  ps->is_periodic = is_period;
341 
343 
344  /*
345  * Do not allow the guest to program periodic timers with small
346  * interval, since the hrtimers are not throttled by the host
347  * scheduler.
348  */
349  if (ps->is_periodic) {
350  s64 min_period = min_timer_period_us * 1000LL;
351 
352  if (ps->period < min_period) {
353  pr_info_ratelimited(
354  "requested %lld ns "
355  "i8254 timer period limited to %lld ns\n",
356  ps->period, min_period);
357  ps->period = min_period;
358  }
359  }
360 
361  hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
362  HRTIMER_MODE_ABS);
363 }
364 
365 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
366 {
367  struct kvm_kpit_state *ps = &pit->pit_state;
368 
369  pr_debug("load_count val is %u, channel is %d\n", val, channel);
370 
371  /*
372  * The largest possible initial count is 0; this is equivalent
373  * to 216 for binary counting and 104 for BCD counting.
374  */
375  if (val == 0)
376  val = 0x10000;
377 
378  ps->channels[channel].count = val;
379 
380  if (channel != 0) {
381  ps->channels[channel].count_load_time = ktime_get();
382  return;
383  }
384 
385  /* Two types of timer
386  * mode 1 is one shot, mode 2 is period, otherwise del timer */
387  switch (ps->channels[0].mode) {
388  case 0:
389  case 1:
390  /* FIXME: enhance mode 4 precision */
391  case 4:
392  create_pit_timer(pit, val, 0);
393  break;
394  case 2:
395  case 3:
396  create_pit_timer(pit, val, 1);
397  break;
398  default:
399  destroy_pit_timer(pit);
400  }
401 }
402 
403 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
404  int hpet_legacy_start)
405 {
406  u8 saved_mode;
407 
408  WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
409 
410  if (hpet_legacy_start) {
411  /* save existing mode for later reenablement */
412  WARN_ON(channel != 0);
413  saved_mode = pit->pit_state.channels[0].mode;
414  pit->pit_state.channels[0].mode = 0xff; /* disable timer */
415  pit_load_count(pit, channel, val);
416  pit->pit_state.channels[0].mode = saved_mode;
417  } else {
418  pit_load_count(pit, channel, val);
419  }
420 }
421 
422 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
423 {
424  return container_of(dev, struct kvm_pit, dev);
425 }
426 
427 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
428 {
429  return container_of(dev, struct kvm_pit, speaker_dev);
430 }
431 
432 static inline int pit_in_range(gpa_t addr)
433 {
434  return ((addr >= KVM_PIT_BASE_ADDRESS) &&
436 }
437 
438 static int pit_ioport_write(struct kvm_vcpu *vcpu,
439  struct kvm_io_device *this,
440  gpa_t addr, int len, const void *data)
441 {
442  struct kvm_pit *pit = dev_to_pit(this);
443  struct kvm_kpit_state *pit_state = &pit->pit_state;
444  int channel, access;
445  struct kvm_kpit_channel_state *s;
446  u32 val = *(u32 *) data;
447  if (!pit_in_range(addr))
448  return -EOPNOTSUPP;
449 
450  val &= 0xff;
451  addr &= KVM_PIT_CHANNEL_MASK;
452 
453  mutex_lock(&pit_state->lock);
454 
455  if (val != 0)
456  pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
457  (unsigned int)addr, len, val);
458 
459  if (addr == 3) {
460  channel = val >> 6;
461  if (channel == 3) {
462  /* Read-Back Command. */
463  for (channel = 0; channel < 3; channel++) {
464  if (val & (2 << channel)) {
465  if (!(val & 0x20))
466  pit_latch_count(pit, channel);
467  if (!(val & 0x10))
468  pit_latch_status(pit, channel);
469  }
470  }
471  } else {
472  /* Select Counter <channel>. */
473  s = &pit_state->channels[channel];
474  access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
475  if (access == 0) {
476  pit_latch_count(pit, channel);
477  } else {
478  s->rw_mode = access;
479  s->read_state = access;
480  s->write_state = access;
481  s->mode = (val >> 1) & 7;
482  if (s->mode > 5)
483  s->mode -= 4;
484  s->bcd = val & 1;
485  }
486  }
487  } else {
488  /* Write Count. */
489  s = &pit_state->channels[addr];
490  switch (s->write_state) {
491  default:
492  case RW_STATE_LSB:
493  pit_load_count(pit, addr, val);
494  break;
495  case RW_STATE_MSB:
496  pit_load_count(pit, addr, val << 8);
497  break;
498  case RW_STATE_WORD0:
499  s->write_latch = val;
501  break;
502  case RW_STATE_WORD1:
503  pit_load_count(pit, addr, s->write_latch | (val << 8));
505  break;
506  }
507  }
508 
509  mutex_unlock(&pit_state->lock);
510  return 0;
511 }
512 
513 static int pit_ioport_read(struct kvm_vcpu *vcpu,
514  struct kvm_io_device *this,
515  gpa_t addr, int len, void *data)
516 {
517  struct kvm_pit *pit = dev_to_pit(this);
518  struct kvm_kpit_state *pit_state = &pit->pit_state;
519  int ret, count;
520  struct kvm_kpit_channel_state *s;
521  if (!pit_in_range(addr))
522  return -EOPNOTSUPP;
523 
524  addr &= KVM_PIT_CHANNEL_MASK;
525  if (addr == 3)
526  return 0;
527 
528  s = &pit_state->channels[addr];
529 
530  mutex_lock(&pit_state->lock);
531 
532  if (s->status_latched) {
533  s->status_latched = 0;
534  ret = s->status;
535  } else if (s->count_latched) {
536  switch (s->count_latched) {
537  default:
538  case RW_STATE_LSB:
539  ret = s->latched_count & 0xff;
540  s->count_latched = 0;
541  break;
542  case RW_STATE_MSB:
543  ret = s->latched_count >> 8;
544  s->count_latched = 0;
545  break;
546  case RW_STATE_WORD0:
547  ret = s->latched_count & 0xff;
549  break;
550  }
551  } else {
552  switch (s->read_state) {
553  default:
554  case RW_STATE_LSB:
555  count = pit_get_count(pit, addr);
556  ret = count & 0xff;
557  break;
558  case RW_STATE_MSB:
559  count = pit_get_count(pit, addr);
560  ret = (count >> 8) & 0xff;
561  break;
562  case RW_STATE_WORD0:
563  count = pit_get_count(pit, addr);
564  ret = count & 0xff;
566  break;
567  case RW_STATE_WORD1:
568  count = pit_get_count(pit, addr);
569  ret = (count >> 8) & 0xff;
571  break;
572  }
573  }
574 
575  if (len > sizeof(ret))
576  len = sizeof(ret);
577  memcpy(data, (char *)&ret, len);
578 
579  mutex_unlock(&pit_state->lock);
580  return 0;
581 }
582 
583 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
584  struct kvm_io_device *this,
585  gpa_t addr, int len, const void *data)
586 {
587  struct kvm_pit *pit = speaker_to_pit(this);
588  struct kvm_kpit_state *pit_state = &pit->pit_state;
589  u32 val = *(u32 *) data;
590  if (addr != KVM_SPEAKER_BASE_ADDRESS)
591  return -EOPNOTSUPP;
592 
593  mutex_lock(&pit_state->lock);
594  if (val & (1 << 1))
595  pit_state->flags |= KVM_PIT_FLAGS_SPEAKER_DATA_ON;
596  else
597  pit_state->flags &= ~KVM_PIT_FLAGS_SPEAKER_DATA_ON;
598  pit_set_gate(pit, 2, val & 1);
599  mutex_unlock(&pit_state->lock);
600  return 0;
601 }
602 
603 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
604  struct kvm_io_device *this,
605  gpa_t addr, int len, void *data)
606 {
607  struct kvm_pit *pit = speaker_to_pit(this);
608  struct kvm_kpit_state *pit_state = &pit->pit_state;
609  unsigned int refresh_clock;
610  int ret;
611  if (addr != KVM_SPEAKER_BASE_ADDRESS)
612  return -EOPNOTSUPP;
613 
614  /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
615  refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
616 
617  mutex_lock(&pit_state->lock);
618  ret = (!!(pit_state->flags & KVM_PIT_FLAGS_SPEAKER_DATA_ON) << 1) |
619  pit_get_gate(pit, 2) | (pit_get_out(pit, 2) << 5) |
620  (refresh_clock << 4);
621  if (len > sizeof(ret))
622  len = sizeof(ret);
623  memcpy(data, (char *)&ret, len);
624  mutex_unlock(&pit_state->lock);
625  return 0;
626 }
627 
628 static void kvm_pit_reset(struct kvm_pit *pit)
629 {
630  int i;
631  struct kvm_kpit_channel_state *c;
632 
633  pit->pit_state.flags = 0;
634  for (i = 0; i < 3; i++) {
635  c = &pit->pit_state.channels[i];
636  c->mode = 0xff;
637  c->gate = (i != 2);
638  pit_load_count(pit, i, 0);
639  }
640 
642 }
643 
644 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
645 {
646  struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
647 
648  if (!mask)
650 }
651 
652 static const struct kvm_io_device_ops pit_dev_ops = {
654  .write = pit_ioport_write,
655 };
656 
657 static const struct kvm_io_device_ops speaker_dev_ops = {
659  .write = speaker_ioport_write,
660 };
661 
662 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
663 {
664  struct kvm_pit *pit;
665  struct kvm_kpit_state *pit_state;
666  struct pid *pid;
667  pid_t pid_nr;
668  int ret;
669 
670  pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
671  if (!pit)
672  return NULL;
673 
675  if (pit->irq_source_id < 0)
676  goto fail_request;
677 
678  mutex_init(&pit->pit_state.lock);
679 
680  pid = get_pid(task_tgid(current));
681  pid_nr = pid_vnr(pid);
682  put_pid(pid);
683 
684  pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
685  if (IS_ERR(pit->worker))
686  goto fail_kthread;
687 
688  kthread_init_work(&pit->expired, pit_do_work);
689 
690  pit->kvm = kvm;
691 
692  pit_state = &pit->pit_state;
693  hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
694  pit_state->timer.function = pit_timer_fn;
695 
696  pit_state->irq_ack_notifier.gsi = 0;
697  pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
698  pit->mask_notifier.func = pit_mask_notifer;
699 
700  kvm_pit_reset(pit);
701 
702  kvm_pit_set_reinject(pit, true);
703 
704  mutex_lock(&kvm->slots_lock);
706  ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
707  KVM_PIT_MEM_LENGTH, &pit->dev);
708  if (ret < 0)
709  goto fail_register_pit;
710 
711  if (flags & KVM_PIT_SPEAKER_DUMMY) {
713  ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
715  &pit->speaker_dev);
716  if (ret < 0)
717  goto fail_register_speaker;
718  }
719  mutex_unlock(&kvm->slots_lock);
720 
721  return pit;
722 
723 fail_register_speaker:
724  kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
725 fail_register_pit:
726  mutex_unlock(&kvm->slots_lock);
727  kvm_pit_set_reinject(pit, false);
728  kthread_destroy_worker(pit->worker);
729 fail_kthread:
731 fail_request:
732  kfree(pit);
733  return NULL;
734 }
735 
736 void kvm_free_pit(struct kvm *kvm)
737 {
738  struct kvm_pit *pit = kvm->arch.vpit;
739 
740  if (pit) {
741  mutex_lock(&kvm->slots_lock);
742  kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
743  kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
744  mutex_unlock(&kvm->slots_lock);
745  kvm_pit_set_reinject(pit, false);
746  hrtimer_cancel(&pit->pit_state.timer);
747  kthread_destroy_worker(pit->worker);
749  kfree(pit);
750  }
751 }
#define RW_STATE_WORD0
Definition: i8254.c:51
struct kvm_pit * kvm_create_pit(struct kvm *kvm, u32 flags)
Definition: i8254.c:662
static int speaker_ioport_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *data)
Definition: i8254.c:603
void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val, int hpet_legacy_start)
Definition: i8254.c:403
static void kvm_pit_reset(struct kvm_pit *pit)
Definition: i8254.c:628
static struct kvm_pit * dev_to_pit(struct kvm_io_device *dev)
Definition: i8254.c:422
void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
Definition: i8254.c:291
void kvm_free_pit(struct kvm *kvm)
Definition: i8254.c:736
#define RW_STATE_LSB
Definition: i8254.c:49
static struct kvm_pit * pit_state_to_pit(struct kvm_kpit_state *ps)
Definition: i8254.c:198
static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
Definition: i8254.c:54
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
Definition: i8254.c:218
static void pit_latch_count(struct kvm_pit *pit, int channel)
Definition: i8254.c:174
#define RW_STATE_WORD1
Definition: i8254.c:52
static int pit_ioport_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *data)
Definition: i8254.c:513
static int pit_get_gate(struct kvm_pit *pit, int channel)
Definition: i8254.c:77
static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
Definition: i8254.c:365
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
Definition: i8254.c:268
static const struct kvm_io_device_ops speaker_dev_ops
Definition: i8254.c:657
static int speaker_ioport_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *data)
Definition: i8254.c:583
static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
Definition: i8254.c:322
#define mod_64(x, y)
Definition: i8254.c:44
static void pit_latch_status(struct kvm_pit *pit, int channel)
Definition: i8254.c:184
static int pit_ioport_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *data)
Definition: i8254.c:438
static int pit_get_count(struct kvm_pit *pit, int channel)
Definition: i8254.c:115
static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
Definition: i8254.c:203
static void pit_do_work(struct kthread_work *work)
Definition: i8254.c:240
static int pit_in_range(gpa_t addr)
Definition: i8254.c:432
static struct kvm_pit * speaker_to_pit(struct kvm_io_device *dev)
Definition: i8254.c:427
static s64 __kpit_elapsed(struct kvm_pit *pit)
Definition: i8254.c:82
static const struct kvm_io_device_ops pit_dev_ops
Definition: i8254.c:652
static int pit_get_out(struct kvm_pit *pit, int channel)
Definition: i8254.c:142
static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
Definition: i8254.c:644
#define RW_STATE_MSB
Definition: i8254.c:50
static void kvm_pit_reset_reinject(struct kvm_pit *pit)
Definition: i8254.c:285
static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c, int channel)
Definition: i8254.c:106
static void destroy_pit_timer(struct kvm_pit *pit)
Definition: i8254.c:234
#define KVM_PIT_BASE_ADDRESS
Definition: i8254.h:51
#define KVM_PIT_FREQ
Definition: i8254.h:54
#define KVM_PIT_CHANNEL_MASK
Definition: i8254.h:56
#define KVM_SPEAKER_BASE_ADDRESS
Definition: i8254.h:52
#define KVM_PIT_MEM_LENGTH
Definition: i8254.h:53
static int ioapic_in_kernel(struct kvm *kvm)
Definition: ioapic.h:104
static void kvm_iodevice_init(struct kvm_io_device *dev, const struct kvm_io_device_ops *ops)
Definition: iodev.h:36
void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
Definition: lapic.c:2782
int kvm_request_irq_source_id(struct kvm *kvm)
Definition: irq_comm.c:197
void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, struct kvm_irq_mask_notifier *kimn)
Definition: irq_comm.c:241
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, struct kvm_irq_mask_notifier *kimn)
Definition: irq_comm.c:250
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id)
Definition: irq_comm.c:220
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status)
Definition: irqchip.c:70
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, struct kvm_io_device *dev)
Definition: kvm_main.c:5897
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, struct kvm_io_device *dev)
Definition: kvm_main.c:5941
int(* read)(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *val)
Definition: iodev.h:18
ktime_t count_load_time
Definition: i8254.h:22
u32 flags
Definition: i8254.h:28
struct mutex lock
Definition: i8254.h:33
atomic_t irq_ack
Definition: i8254.h:36
struct hrtimer timer
Definition: i8254.h:31
atomic_t reinject
Definition: i8254.h:34
s64 period
Definition: i8254.h:30
bool is_periodic
Definition: i8254.h:29
struct kvm_kpit_channel_state channels[3]
Definition: i8254.h:27
atomic_t pending
Definition: i8254.h:35
struct kvm_irq_ack_notifier irq_ack_notifier
Definition: i8254.h:37
Definition: i8254.h:40
struct kvm * kvm
Definition: i8254.h:43
struct kthread_work expired
Definition: i8254.h:48
int irq_source_id
Definition: i8254.h:45
struct kvm_irq_mask_notifier mask_notifier
Definition: i8254.h:46
struct kthread_worker * worker
Definition: i8254.h:47
struct kvm_io_device dev
Definition: i8254.h:41
struct kvm_kpit_state pit_state
Definition: i8254.h:44
struct kvm_io_device speaker_dev
Definition: i8254.h:42
unsigned int min_timer_period_us
Definition: x86.c:154
uint32_t flags
Definition: xen.c:1