KVM
arch_timer.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20 
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23 
24 #include "trace.h"
25 
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
31 
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33 
34 static const u8 default_ppi[] = {
35  [TIMER_PTIMER] = 30,
36  [TIMER_VTIMER] = 27,
37  [TIMER_HPTIMER] = 26,
38  [TIMER_HVTIMER] = 28,
39 };
40 
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43  struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46  struct arch_timer_context *timer,
47  enum kvm_arch_timer_regs treg,
48  u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50  struct arch_timer_context *timer,
51  enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53 
54 static struct irq_ops arch_timer_irq_ops = {
56 };
57 
58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60  if (!vcpu_has_nv(vcpu))
61  return NR_KVM_EL0_TIMERS;
62 
63  return NR_KVM_TIMERS;
64 }
65 
67 {
68  struct kvm_vcpu *vcpu = ctxt->vcpu;
69 
70  switch(arch_timer_ctx_index(ctxt)) {
71  case TIMER_VTIMER:
72  return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73  case TIMER_PTIMER:
74  return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75  case TIMER_HVTIMER:
76  return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77  case TIMER_HPTIMER:
78  return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79  default:
80  WARN_ON(1);
81  return 0;
82  }
83 }
84 
86 {
87  struct kvm_vcpu *vcpu = ctxt->vcpu;
88 
89  switch(arch_timer_ctx_index(ctxt)) {
90  case TIMER_VTIMER:
91  return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92  case TIMER_PTIMER:
93  return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94  case TIMER_HVTIMER:
95  return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96  case TIMER_HPTIMER:
97  return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98  default:
99  WARN_ON(1);
100  return 0;
101  }
102 }
103 
104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106  u64 offset = 0;
107 
108  if (!ctxt)
109  return 0;
110 
111  if (ctxt->offset.vm_offset)
112  offset += *ctxt->offset.vm_offset;
113  if (ctxt->offset.vcpu_offset)
114  offset += *ctxt->offset.vcpu_offset;
115 
116  return offset;
117 }
118 
119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121  struct kvm_vcpu *vcpu = ctxt->vcpu;
122 
123  switch(arch_timer_ctx_index(ctxt)) {
124  case TIMER_VTIMER:
125  __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126  break;
127  case TIMER_PTIMER:
128  __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129  break;
130  case TIMER_HVTIMER:
131  __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132  break;
133  case TIMER_HPTIMER:
134  __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135  break;
136  default:
137  WARN_ON(1);
138  }
139 }
140 
141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143  struct kvm_vcpu *vcpu = ctxt->vcpu;
144 
145  switch(arch_timer_ctx_index(ctxt)) {
146  case TIMER_VTIMER:
147  __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148  break;
149  case TIMER_PTIMER:
150  __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151  break;
152  case TIMER_HVTIMER:
153  __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154  break;
155  case TIMER_HPTIMER:
156  __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157  break;
158  default:
159  WARN_ON(1);
160  }
161 }
162 
163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165  if (!ctxt->offset.vm_offset) {
166  WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167  return;
168  }
169 
170  WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172 
174 {
175  return timecounter->cc->read(timecounter->cc);
176 }
177 
178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180  if (vcpu_has_nv(vcpu)) {
181  if (is_hyp_ctxt(vcpu)) {
182  map->direct_vtimer = vcpu_hvtimer(vcpu);
183  map->direct_ptimer = vcpu_hptimer(vcpu);
184  map->emul_vtimer = vcpu_vtimer(vcpu);
185  map->emul_ptimer = vcpu_ptimer(vcpu);
186  } else {
187  map->direct_vtimer = vcpu_vtimer(vcpu);
188  map->direct_ptimer = vcpu_ptimer(vcpu);
189  map->emul_vtimer = vcpu_hvtimer(vcpu);
190  map->emul_ptimer = vcpu_hptimer(vcpu);
191  }
192  } else if (has_vhe()) {
193  map->direct_vtimer = vcpu_vtimer(vcpu);
194  map->direct_ptimer = vcpu_ptimer(vcpu);
195  map->emul_vtimer = NULL;
196  map->emul_ptimer = NULL;
197  } else {
198  map->direct_vtimer = vcpu_vtimer(vcpu);
199  map->direct_ptimer = NULL;
200  map->emul_vtimer = NULL;
201  map->emul_ptimer = vcpu_ptimer(vcpu);
202  }
203 
204  trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206 
207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209  return static_branch_unlikely(&userspace_irqchip_in_use) &&
210  unlikely(!irqchip_in_kernel(kvm));
211 }
212 
213 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214 {
215  hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216  HRTIMER_MODE_ABS_HARD);
217 }
218 
219 static void soft_timer_cancel(struct hrtimer *hrt)
220 {
221  hrtimer_cancel(hrt);
222 }
223 
224 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225 {
226  struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227  struct arch_timer_context *ctx;
228  struct timer_map map;
229 
230  /*
231  * We may see a timer interrupt after vcpu_put() has been called which
232  * sets the CPU's vcpu pointer to NULL, because even though the timer
233  * has been disabled in timer_save_state(), the hardware interrupt
234  * signal may not have been retired from the interrupt controller yet.
235  */
236  if (!vcpu)
237  return IRQ_HANDLED;
238 
239  get_timer_map(vcpu, &map);
240 
241  if (irq == host_vtimer_irq)
242  ctx = map.direct_vtimer;
243  else
244  ctx = map.direct_ptimer;
245 
246  if (kvm_timer_should_fire(ctx))
247  kvm_timer_update_irq(vcpu, true, ctx);
248 
249  if (userspace_irqchip(vcpu->kvm) &&
250  !static_branch_unlikely(&has_gic_active_state))
251  disable_percpu_irq(host_vtimer_irq);
252 
253  return IRQ_HANDLED;
254 }
255 
256 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257  u64 val)
258 {
259  u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260 
261  if (now < val) {
262  u64 ns;
263 
264  ns = cyclecounter_cyc2ns(timecounter->cc,
265  val - now,
266  timecounter->mask,
267  &timer_ctx->ns_frac);
268  return ns;
269  }
270 
271  return 0;
272 }
273 
274 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275 {
276  return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277 }
278 
279 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280 {
281  WARN_ON(timer_ctx && timer_ctx->loaded);
282  return timer_ctx &&
283  ((timer_get_ctl(timer_ctx) &
284  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285 }
286 
287 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288 {
289  return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290  vcpu_get_flag(vcpu, IN_WFIT));
291 }
292 
293 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294 {
295  u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296  struct arch_timer_context *ctx;
297 
298  ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
299 
300  return kvm_counter_compute_delta(ctx, val);
301 }
302 
303 /*
304  * Returns the earliest expiration time in ns among guest timers.
305  * Note that it will return 0 if none of timers can fire.
306  */
307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308 {
309  u64 min_delta = ULLONG_MAX;
310  int i;
311 
312  for (i = 0; i < nr_timers(vcpu); i++) {
313  struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314 
315  WARN(ctx->loaded, "timer %d loaded\n", i);
316  if (kvm_timer_irq_can_fire(ctx))
317  min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318  }
319 
321  min_delta = min(min_delta, wfit_delay_ns(vcpu));
322 
323  /* If none of timers can fire, then return 0 */
324  if (min_delta == ULLONG_MAX)
325  return 0;
326 
327  return min_delta;
328 }
329 
330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331 {
332  struct arch_timer_cpu *timer;
333  struct kvm_vcpu *vcpu;
334  u64 ns;
335 
336  timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337  vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338 
339  /*
340  * Check that the timer has really expired from the guest's
341  * PoV (NTP on the host may have forced it to expire
342  * early). If we should have slept longer, restart it.
343  */
344  ns = kvm_timer_earliest_exp(vcpu);
345  if (unlikely(ns)) {
346  hrtimer_forward_now(hrt, ns_to_ktime(ns));
347  return HRTIMER_RESTART;
348  }
349 
350  kvm_vcpu_wake_up(vcpu);
351  return HRTIMER_NORESTART;
352 }
353 
354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355 {
356  struct arch_timer_context *ctx;
357  struct kvm_vcpu *vcpu;
358  u64 ns;
359 
360  ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361  vcpu = ctx->vcpu;
362 
363  trace_kvm_timer_hrtimer_expire(ctx);
364 
365  /*
366  * Check that the timer has really expired from the guest's
367  * PoV (NTP on the host may have forced it to expire
368  * early). If not ready, schedule for a later time.
369  */
370  ns = kvm_timer_compute_delta(ctx);
371  if (unlikely(ns)) {
372  hrtimer_forward_now(hrt, ns_to_ktime(ns));
373  return HRTIMER_RESTART;
374  }
375 
376  kvm_timer_update_irq(vcpu, true, ctx);
377  return HRTIMER_NORESTART;
378 }
379 
380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381 {
382  enum kvm_arch_timers index;
383  u64 cval, now;
384 
385  if (!timer_ctx)
386  return false;
387 
388  index = arch_timer_ctx_index(timer_ctx);
389 
390  if (timer_ctx->loaded) {
391  u32 cnt_ctl = 0;
392 
393  switch (index) {
394  case TIMER_VTIMER:
395  case TIMER_HVTIMER:
396  cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397  break;
398  case TIMER_PTIMER:
399  case TIMER_HPTIMER:
400  cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401  break;
402  case NR_KVM_TIMERS:
403  /* GCC is braindead */
404  cnt_ctl = 0;
405  break;
406  }
407 
408  return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409  (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410  !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411  }
412 
413  if (!kvm_timer_irq_can_fire(timer_ctx))
414  return false;
415 
416  cval = timer_get_cval(timer_ctx);
417  now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418 
419  return cval <= now;
420 }
421 
422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423 {
424  return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425 }
426 
427 /*
428  * Reflect the timer output level into the kvm_run structure
429  */
430 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431 {
432  struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433  struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434  struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435 
436  /* Populate the device bitmap with the timer states */
437  regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438  KVM_ARM_DEV_EL1_PTIMER);
439  if (kvm_timer_should_fire(vtimer))
440  regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441  if (kvm_timer_should_fire(ptimer))
442  regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443 }
444 
445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446  struct arch_timer_context *timer_ctx)
447 {
448  int ret;
449 
450  timer_ctx->irq.level = new_level;
451  trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452  timer_ctx->irq.level);
453 
454  if (!userspace_irqchip(vcpu->kvm)) {
455  ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
456  timer_irq(timer_ctx),
457  timer_ctx->irq.level,
458  timer_ctx);
459  WARN_ON(ret);
460  }
461 }
462 
463 /* Only called for a fully emulated timer */
464 static void timer_emulate(struct arch_timer_context *ctx)
465 {
466  bool should_fire = kvm_timer_should_fire(ctx);
467 
468  trace_kvm_timer_emulate(ctx, should_fire);
469 
470  if (should_fire != ctx->irq.level) {
471  kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472  return;
473  }
474 
475  /*
476  * If the timer can fire now, we don't need to have a soft timer
477  * scheduled for the future. If the timer cannot fire at all,
478  * then we also don't need a soft timer.
479  */
480  if (should_fire || !kvm_timer_irq_can_fire(ctx))
481  return;
482 
484 }
485 
486 static void set_cntvoff(u64 cntvoff)
487 {
488  kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
489 }
490 
491 static void set_cntpoff(u64 cntpoff)
492 {
493  if (has_cntpoff())
494  write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
495 }
496 
497 static void timer_save_state(struct arch_timer_context *ctx)
498 {
499  struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
500  enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
501  unsigned long flags;
502 
503  if (!timer->enabled)
504  return;
505 
506  local_irq_save(flags);
507 
508  if (!ctx->loaded)
509  goto out;
510 
511  switch (index) {
512  u64 cval;
513 
514  case TIMER_VTIMER:
515  case TIMER_HVTIMER:
516  timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
517  timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
518 
519  /* Disable the timer */
520  write_sysreg_el0(0, SYS_CNTV_CTL);
521  isb();
522 
523  /*
524  * The kernel may decide to run userspace after
525  * calling vcpu_put, so we reset cntvoff to 0 to
526  * ensure a consistent read between user accesses to
527  * the virtual counter and kernel access to the
528  * physical counter of non-VHE case.
529  *
530  * For VHE, the virtual counter uses a fixed virtual
531  * offset of zero, so no need to zero CNTVOFF_EL2
532  * register, but this is actually useful when switching
533  * between EL1/vEL2 with NV.
534  *
535  * Do it unconditionally, as this is either unavoidable
536  * or dirt cheap.
537  */
538  set_cntvoff(0);
539  break;
540  case TIMER_PTIMER:
541  case TIMER_HPTIMER:
542  timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
543  cval = read_sysreg_el0(SYS_CNTP_CVAL);
544 
545  cval -= timer_get_offset(ctx);
546 
547  timer_set_cval(ctx, cval);
548 
549  /* Disable the timer */
550  write_sysreg_el0(0, SYS_CNTP_CTL);
551  isb();
552 
553  set_cntpoff(0);
554  break;
555  case NR_KVM_TIMERS:
556  BUG();
557  }
558 
559  trace_kvm_timer_save_state(ctx);
560 
561  ctx->loaded = false;
562 out:
563  local_irq_restore(flags);
564 }
565 
566 /*
567  * Schedule the background timer before calling kvm_vcpu_halt, so that this
568  * thread is removed from its waitqueue and made runnable when there's a timer
569  * interrupt to handle.
570  */
571 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
572 {
573  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
574  struct timer_map map;
575 
576  get_timer_map(vcpu, &map);
577 
578  /*
579  * If no timers are capable of raising interrupts (disabled or
580  * masked), then there's no more work for us to do.
581  */
586  !vcpu_has_wfit_active(vcpu))
587  return;
588 
589  /*
590  * At least one guest time will expire. Schedule a background timer.
591  * Set the earliest expiration time among the guest timers.
592  */
594 }
595 
596 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
597 {
598  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
599 
600  soft_timer_cancel(&timer->bg_timer);
601 }
602 
603 static void timer_restore_state(struct arch_timer_context *ctx)
604 {
605  struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
606  enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
607  unsigned long flags;
608 
609  if (!timer->enabled)
610  return;
611 
612  local_irq_save(flags);
613 
614  if (ctx->loaded)
615  goto out;
616 
617  switch (index) {
618  u64 cval, offset;
619 
620  case TIMER_VTIMER:
621  case TIMER_HVTIMER:
623  write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
624  isb();
625  write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
626  break;
627  case TIMER_PTIMER:
628  case TIMER_HPTIMER:
629  cval = timer_get_cval(ctx);
630  offset = timer_get_offset(ctx);
631  set_cntpoff(offset);
632  cval += offset;
633  write_sysreg_el0(cval, SYS_CNTP_CVAL);
634  isb();
635  write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
636  break;
637  case NR_KVM_TIMERS:
638  BUG();
639  }
640 
641  trace_kvm_timer_restore_state(ctx);
642 
643  ctx->loaded = true;
644 out:
645  local_irq_restore(flags);
646 }
647 
648 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
649 {
650  int r;
651  r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
652  WARN_ON(r);
653 }
654 
656 {
657  struct kvm_vcpu *vcpu = ctx->vcpu;
658  bool phys_active = false;
659 
660  /*
661  * Update the timer output so that it is likely to match the
662  * state we're about to restore. If the timer expires between
663  * this point and the register restoration, we'll take the
664  * interrupt anyway.
665  */
667 
668  if (irqchip_in_kernel(vcpu->kvm))
669  phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
670 
671  phys_active |= ctx->irq.level;
672 
673  set_timer_irq_phys_active(ctx, phys_active);
674 }
675 
676 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
677 {
678  struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679 
680  /*
681  * Update the timer output so that it is likely to match the
682  * state we're about to restore. If the timer expires between
683  * this point and the register restoration, we'll take the
684  * interrupt anyway.
685  */
687 
688  /*
689  * When using a userspace irqchip with the architected timers and a
690  * host interrupt controller that doesn't support an active state, we
691  * must still prevent continuously exiting from the guest, and
692  * therefore mask the physical interrupt by disabling it on the host
693  * interrupt controller when the virtual level is high, such that the
694  * guest can make forward progress. Once we detect the output level
695  * being de-asserted, we unmask the interrupt again so that we exit
696  * from the guest when the timer fires.
697  */
698  if (vtimer->irq.level)
699  disable_percpu_irq(host_vtimer_irq);
700  else
701  enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702 }
703 
704 /* If _pred is true, set bit in _set, otherwise set it in _clr */
705 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \
706  do { \
707  if (_pred) \
708  (_set) |= (_bit); \
709  else \
710  (_clr) |= (_bit); \
711  } while (0)
712 
713 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
714  struct timer_map *map)
715 {
716  int hw, ret;
717 
718  if (!irqchip_in_kernel(vcpu->kvm))
719  return;
720 
721  /*
722  * We only ever unmap the vtimer irq on a VHE system that runs nested
723  * virtualization, in which case we have both a valid emul_vtimer,
724  * emul_ptimer, direct_vtimer, and direct_ptimer.
725  *
726  * Since this is called from kvm_timer_vcpu_load(), a change between
727  * vEL2 and vEL1/0 will have just happened, and the timer_map will
728  * represent this, and therefore we switch the emul/direct mappings
729  * below.
730  */
732  if (hw < 0) {
735 
738  timer_irq(map->direct_vtimer),
740  WARN_ON_ONCE(ret);
743  timer_irq(map->direct_ptimer),
745  WARN_ON_ONCE(ret);
746 
747  /*
748  * The virtual offset behaviour is "interresting", as it
749  * always applies when HCR_EL2.E2H==0, but only when
750  * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
751  * track E2H when putting the HV timer in "direct" mode.
752  */
753  if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
754  struct arch_timer_offset *offs = &map->direct_vtimer->offset;
755 
756  if (vcpu_el2_e2h_is_set(vcpu))
757  offs->vcpu_offset = NULL;
758  else
759  offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
760  }
761  }
762 }
763 
764 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
765 {
766  bool tpt, tpc;
767  u64 clr, set;
768 
769  /*
770  * No trapping gets configured here with nVHE. See
771  * __timer_enable_traps(), which is where the stuff happens.
772  */
773  if (!has_vhe())
774  return;
775 
776  /*
777  * Our default policy is not to trap anything. As we progress
778  * within this function, reality kicks in and we start adding
779  * traps based on emulation requirements.
780  */
781  tpt = tpc = false;
782 
783  /*
784  * We have two possibility to deal with a physical offset:
785  *
786  * - Either we have CNTPOFF (yay!) or the offset is 0:
787  * we let the guest freely access the HW
788  *
789  * - or neither of these condition apply:
790  * we trap accesses to the HW, but still use it
791  * after correcting the physical offset
792  */
794  tpt = tpc = true;
795 
796  /*
797  * Apply the enable bits that the guest hypervisor has requested for
798  * its own guest. We can only add traps that wouldn't have been set
799  * above.
800  */
801  if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
802  u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
803 
804  /* Use the VHE format for mental sanity */
805  if (!vcpu_el2_e2h_is_set(vcpu))
806  val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
807 
808  tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
809  tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
810  }
811 
812  /*
813  * Now that we have collected our requirements, compute the
814  * trap and enable bits.
815  */
816  set = 0;
817  clr = 0;
818 
819  assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
820  assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
821 
822  /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
823  sysreg_clear_set(cnthctl_el2, clr, set);
824 }
825 
826 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
827 {
828  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
829  struct timer_map map;
830 
831  if (unlikely(!timer->enabled))
832  return;
833 
834  get_timer_map(vcpu, &map);
835 
836  if (static_branch_likely(&has_gic_active_state)) {
837  if (vcpu_has_nv(vcpu))
839 
841  if (map.direct_ptimer)
843  } else {
845  }
846 
847  kvm_timer_unblocking(vcpu);
848 
850  if (map.direct_ptimer)
852  if (map.emul_vtimer)
854  if (map.emul_ptimer)
856 
857  timer_set_traps(vcpu, &map);
858 }
859 
860 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
861 {
862  struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
863  struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
864  struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
865  bool vlevel, plevel;
866 
867  if (likely(irqchip_in_kernel(vcpu->kvm)))
868  return false;
869 
870  vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
871  plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
872 
873  return kvm_timer_should_fire(vtimer) != vlevel ||
874  kvm_timer_should_fire(ptimer) != plevel;
875 }
876 
877 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
878 {
879  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
880  struct timer_map map;
881 
882  if (unlikely(!timer->enabled))
883  return;
884 
885  get_timer_map(vcpu, &map);
886 
888  if (map.direct_ptimer)
890 
891  /*
892  * Cancel soft timer emulation, because the only case where we
893  * need it after a vcpu_put is in the context of a sleeping VCPU, and
894  * in that case we already factor in the deadline for the physical
895  * timer when scheduling the bg_timer.
896  *
897  * In any case, we re-schedule the hrtimer for the physical timer when
898  * coming back to the VCPU thread in kvm_timer_vcpu_load().
899  */
900  if (map.emul_vtimer)
902  if (map.emul_ptimer)
904 
905  if (kvm_vcpu_is_blocking(vcpu))
906  kvm_timer_blocking(vcpu);
907 }
908 
909 /*
910  * With a userspace irqchip we have to check if the guest de-asserted the
911  * timer and if so, unmask the timer irq signal on the host interrupt
912  * controller to ensure that we see future timer signals.
913  */
914 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
915 {
916  struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
917 
918  if (!kvm_timer_should_fire(vtimer)) {
919  kvm_timer_update_irq(vcpu, false, vtimer);
920  if (static_branch_likely(&has_gic_active_state))
921  set_timer_irq_phys_active(vtimer, false);
922  else
923  enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
924  }
925 }
926 
927 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
928 {
929  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
930 
931  if (unlikely(!timer->enabled))
932  return;
933 
934  if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
936 }
937 
938 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
939 {
940  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
941  struct timer_map map;
942 
943  get_timer_map(vcpu, &map);
944 
945  /*
946  * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
947  * and to 0 for ARMv7. We provide an implementation that always
948  * resets the timer to be disabled and unmasked and is compliant with
949  * the ARMv7 architecture.
950  */
951  for (int i = 0; i < nr_timers(vcpu); i++)
952  timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
953 
954  /*
955  * A vcpu running at EL2 is in charge of the offset applied to
956  * the virtual timer, so use the physical VM offset, and point
957  * the vcpu offset to CNTVOFF_EL2.
958  */
959  if (vcpu_has_nv(vcpu)) {
960  struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
961 
962  offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
963  offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
964  }
965 
966  if (timer->enabled) {
967  for (int i = 0; i < nr_timers(vcpu); i++)
968  kvm_timer_update_irq(vcpu, false,
969  vcpu_get_timer(vcpu, i));
970 
971  if (irqchip_in_kernel(vcpu->kvm)) {
973  if (map.direct_ptimer)
975  }
976  }
977 
978  if (map.emul_vtimer)
980  if (map.emul_ptimer)
982 }
983 
984 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
985 {
986  struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
987  struct kvm *kvm = vcpu->kvm;
988 
989  ctxt->vcpu = vcpu;
990 
991  if (timerid == TIMER_VTIMER)
992  ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
993  else
994  ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
995 
996  hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
997  ctxt->hrtimer.function = kvm_hrtimer_expire;
998 
999  switch (timerid) {
1000  case TIMER_PTIMER:
1001  case TIMER_HPTIMER:
1003  break;
1004  case TIMER_VTIMER:
1005  case TIMER_HVTIMER:
1007  break;
1008  }
1009 }
1010 
1011 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1012 {
1013  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1014 
1015  for (int i = 0; i < NR_KVM_TIMERS; i++)
1016  timer_context_init(vcpu, i);
1017 
1018  /* Synchronize offsets across timers of a VM if not already provided */
1019  if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1021  timer_set_offset(vcpu_ptimer(vcpu), 0);
1022  }
1023 
1024  hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1025  timer->bg_timer.function = kvm_bg_timer_expire;
1026 }
1027 
1028 void kvm_timer_init_vm(struct kvm *kvm)
1029 {
1030  for (int i = 0; i < NR_KVM_TIMERS; i++)
1031  kvm->arch.timer_data.ppi[i] = default_ppi[i];
1032 }
1033 
1035 {
1036  enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1037  if (host_ptimer_irq)
1038  enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1039 }
1040 
1042 {
1043  disable_percpu_irq(host_vtimer_irq);
1044  if (host_ptimer_irq)
1045  disable_percpu_irq(host_ptimer_irq);
1046 }
1047 
1048 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1049 {
1050  struct arch_timer_context *timer;
1051 
1052  switch (regid) {
1053  case KVM_REG_ARM_TIMER_CTL:
1054  timer = vcpu_vtimer(vcpu);
1055  kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1056  break;
1057  case KVM_REG_ARM_TIMER_CNT:
1058  if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1059  &vcpu->kvm->arch.flags)) {
1060  timer = vcpu_vtimer(vcpu);
1061  timer_set_offset(timer, kvm_phys_timer_read() - value);
1062  }
1063  break;
1064  case KVM_REG_ARM_TIMER_CVAL:
1065  timer = vcpu_vtimer(vcpu);
1066  kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1067  break;
1068  case KVM_REG_ARM_PTIMER_CTL:
1069  timer = vcpu_ptimer(vcpu);
1070  kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1071  break;
1072  case KVM_REG_ARM_PTIMER_CNT:
1073  if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1074  &vcpu->kvm->arch.flags)) {
1075  timer = vcpu_ptimer(vcpu);
1076  timer_set_offset(timer, kvm_phys_timer_read() - value);
1077  }
1078  break;
1079  case KVM_REG_ARM_PTIMER_CVAL:
1080  timer = vcpu_ptimer(vcpu);
1081  kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1082  break;
1083 
1084  default:
1085  return -1;
1086  }
1087 
1088  return 0;
1089 }
1090 
1091 static u64 read_timer_ctl(struct arch_timer_context *timer)
1092 {
1093  /*
1094  * Set ISTATUS bit if it's expired.
1095  * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1096  * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1097  * regardless of ENABLE bit for our implementation convenience.
1098  */
1099  u32 ctl = timer_get_ctl(timer);
1100 
1101  if (!kvm_timer_compute_delta(timer))
1102  ctl |= ARCH_TIMER_CTRL_IT_STAT;
1103 
1104  return ctl;
1105 }
1106 
1107 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1108 {
1109  switch (regid) {
1110  case KVM_REG_ARM_TIMER_CTL:
1111  return kvm_arm_timer_read(vcpu,
1113  case KVM_REG_ARM_TIMER_CNT:
1114  return kvm_arm_timer_read(vcpu,
1116  case KVM_REG_ARM_TIMER_CVAL:
1117  return kvm_arm_timer_read(vcpu,
1119  case KVM_REG_ARM_PTIMER_CTL:
1120  return kvm_arm_timer_read(vcpu,
1122  case KVM_REG_ARM_PTIMER_CNT:
1123  return kvm_arm_timer_read(vcpu,
1125  case KVM_REG_ARM_PTIMER_CVAL:
1126  return kvm_arm_timer_read(vcpu,
1128  }
1129  return (u64)-1;
1130 }
1131 
1132 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1133  struct arch_timer_context *timer,
1134  enum kvm_arch_timer_regs treg)
1135 {
1136  u64 val;
1137 
1138  switch (treg) {
1139  case TIMER_REG_TVAL:
1140  val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1141  val = lower_32_bits(val);
1142  break;
1143 
1144  case TIMER_REG_CTL:
1145  val = read_timer_ctl(timer);
1146  break;
1147 
1148  case TIMER_REG_CVAL:
1149  val = timer_get_cval(timer);
1150  break;
1151 
1152  case TIMER_REG_CNT:
1153  val = kvm_phys_timer_read() - timer_get_offset(timer);
1154  break;
1155 
1156  case TIMER_REG_VOFF:
1157  val = *timer->offset.vcpu_offset;
1158  break;
1159 
1160  default:
1161  BUG();
1162  }
1163 
1164  return val;
1165 }
1166 
1167 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1168  enum kvm_arch_timers tmr,
1169  enum kvm_arch_timer_regs treg)
1170 {
1171  struct arch_timer_context *timer;
1172  struct timer_map map;
1173  u64 val;
1174 
1175  get_timer_map(vcpu, &map);
1176  timer = vcpu_get_timer(vcpu, tmr);
1177 
1178  if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1179  return kvm_arm_timer_read(vcpu, timer, treg);
1180 
1181  preempt_disable();
1182  timer_save_state(timer);
1183 
1184  val = kvm_arm_timer_read(vcpu, timer, treg);
1185 
1186  timer_restore_state(timer);
1187  preempt_enable();
1188 
1189  return val;
1190 }
1191 
1192 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1193  struct arch_timer_context *timer,
1194  enum kvm_arch_timer_regs treg,
1195  u64 val)
1196 {
1197  switch (treg) {
1198  case TIMER_REG_TVAL:
1199  timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1200  break;
1201 
1202  case TIMER_REG_CTL:
1203  timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1204  break;
1205 
1206  case TIMER_REG_CVAL:
1207  timer_set_cval(timer, val);
1208  break;
1209 
1210  case TIMER_REG_VOFF:
1211  *timer->offset.vcpu_offset = val;
1212  break;
1213 
1214  default:
1215  BUG();
1216  }
1217 }
1218 
1219 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1220  enum kvm_arch_timers tmr,
1221  enum kvm_arch_timer_regs treg,
1222  u64 val)
1223 {
1224  struct arch_timer_context *timer;
1225  struct timer_map map;
1226 
1227  get_timer_map(vcpu, &map);
1228  timer = vcpu_get_timer(vcpu, tmr);
1229  if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1230  soft_timer_cancel(&timer->hrtimer);
1231  kvm_arm_timer_write(vcpu, timer, treg, val);
1232  timer_emulate(timer);
1233  } else {
1234  preempt_disable();
1235  timer_save_state(timer);
1236  kvm_arm_timer_write(vcpu, timer, treg, val);
1237  timer_restore_state(timer);
1238  preempt_enable();
1239  }
1240 }
1241 
1242 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1243 {
1244  if (vcpu)
1245  irqd_set_forwarded_to_vcpu(d);
1246  else
1247  irqd_clr_forwarded_to_vcpu(d);
1248 
1249  return 0;
1250 }
1251 
1252 static int timer_irq_set_irqchip_state(struct irq_data *d,
1253  enum irqchip_irq_state which, bool val)
1254 {
1255  if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1256  return irq_chip_set_parent_state(d, which, val);
1257 
1258  if (val)
1259  irq_chip_mask_parent(d);
1260  else
1261  irq_chip_unmask_parent(d);
1262 
1263  return 0;
1264 }
1265 
1266 static void timer_irq_eoi(struct irq_data *d)
1267 {
1268  if (!irqd_is_forwarded_to_vcpu(d))
1269  irq_chip_eoi_parent(d);
1270 }
1271 
1272 static void timer_irq_ack(struct irq_data *d)
1273 {
1274  d = d->parent_data;
1275  if (d->chip->irq_ack)
1276  d->chip->irq_ack(d);
1277 }
1278 
1279 static struct irq_chip timer_chip = {
1280  .name = "KVM",
1281  .irq_ack = timer_irq_ack,
1282  .irq_mask = irq_chip_mask_parent,
1283  .irq_unmask = irq_chip_unmask_parent,
1284  .irq_eoi = timer_irq_eoi,
1285  .irq_set_type = irq_chip_set_type_parent,
1286  .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1287  .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1288 };
1289 
1290 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1291  unsigned int nr_irqs, void *arg)
1292 {
1293  irq_hw_number_t hwirq = (uintptr_t)arg;
1294 
1295  return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1296  &timer_chip, NULL);
1297 }
1298 
1299 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1300  unsigned int nr_irqs)
1301 {
1302 }
1303 
1304 static const struct irq_domain_ops timer_domain_ops = {
1305  .alloc = timer_irq_domain_alloc,
1306  .free = timer_irq_domain_free,
1307 };
1308 
1309 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1310 {
1311  *flags = irq_get_trigger_type(virq);
1312  if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1313  kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1314  virq);
1315  *flags = IRQF_TRIGGER_LOW;
1316  }
1317 }
1318 
1319 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1320 {
1321  struct irq_domain *domain = NULL;
1322 
1323  if (info->virtual_irq <= 0) {
1324  kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1325  info->virtual_irq);
1326  return -ENODEV;
1327  }
1328 
1329  host_vtimer_irq = info->virtual_irq;
1331 
1333  struct fwnode_handle *fwnode;
1334  struct irq_data *data;
1335 
1336  fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1337  if (!fwnode)
1338  return -ENOMEM;
1339 
1340  /* Assume both vtimer and ptimer in the same parent */
1341  data = irq_get_irq_data(host_vtimer_irq);
1342  domain = irq_domain_create_hierarchy(data->domain, 0,
1343  NR_KVM_TIMERS, fwnode,
1344  &timer_domain_ops, NULL);
1345  if (!domain) {
1346  irq_domain_free_fwnode(fwnode);
1347  return -ENOMEM;
1348  }
1349 
1351  WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1352  (void *)TIMER_VTIMER));
1353  }
1354 
1355  if (info->physical_irq > 0) {
1356  host_ptimer_irq = info->physical_irq;
1358 
1359  if (domain)
1360  WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1361  (void *)TIMER_PTIMER));
1362  }
1363 
1364  return 0;
1365 }
1366 
1367 int __init kvm_timer_hyp_init(bool has_gic)
1368 {
1369  struct arch_timer_kvm_info *info;
1370  int err;
1371 
1372  info = arch_timer_get_kvm_info();
1373  timecounter = &info->timecounter;
1374 
1375  if (!timecounter->cc) {
1376  kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1377  return -ENODEV;
1378  }
1379 
1380  err = kvm_irq_init(info);
1381  if (err)
1382  return err;
1383 
1384  /* First, do the virtual EL1 timer irq */
1385 
1386  err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1387  "kvm guest vtimer", kvm_get_running_vcpus());
1388  if (err) {
1389  kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1390  host_vtimer_irq, err);
1391  return err;
1392  }
1393 
1394  if (has_gic) {
1395  err = irq_set_vcpu_affinity(host_vtimer_irq,
1397  if (err) {
1398  kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1399  goto out_free_vtimer_irq;
1400  }
1401 
1402  static_branch_enable(&has_gic_active_state);
1403  }
1404 
1405  kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1406 
1407  /* Now let's do the physical EL1 timer irq */
1408 
1409  if (info->physical_irq > 0) {
1410  err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1411  "kvm guest ptimer", kvm_get_running_vcpus());
1412  if (err) {
1413  kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1414  host_ptimer_irq, err);
1415  goto out_free_vtimer_irq;
1416  }
1417 
1418  if (has_gic) {
1419  err = irq_set_vcpu_affinity(host_ptimer_irq,
1421  if (err) {
1422  kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1423  goto out_free_ptimer_irq;
1424  }
1425  }
1426 
1427  kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1428  } else if (has_vhe()) {
1429  kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1430  info->physical_irq);
1431  err = -ENODEV;
1432  goto out_free_vtimer_irq;
1433  }
1434 
1435  return 0;
1436 
1437 out_free_ptimer_irq:
1438  if (info->physical_irq > 0)
1439  free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1440 out_free_vtimer_irq:
1441  free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1442  return err;
1443 }
1444 
1445 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1446 {
1447  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1448 
1449  soft_timer_cancel(&timer->bg_timer);
1450 }
1451 
1452 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1453 {
1454  u32 ppis = 0;
1455  bool valid;
1456 
1457  mutex_lock(&vcpu->kvm->arch.config_lock);
1458 
1459  for (int i = 0; i < nr_timers(vcpu); i++) {
1460  struct arch_timer_context *ctx;
1461  int irq;
1462 
1463  ctx = vcpu_get_timer(vcpu, i);
1464  irq = timer_irq(ctx);
1465  if (kvm_vgic_set_owner(vcpu, irq, ctx))
1466  break;
1467 
1468  /*
1469  * We know by construction that we only have PPIs, so
1470  * all values are less than 32.
1471  */
1472  ppis |= BIT(irq);
1473  }
1474 
1475  valid = hweight32(ppis) == nr_timers(vcpu);
1476 
1477  if (valid)
1478  set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1479 
1480  mutex_unlock(&vcpu->kvm->arch.config_lock);
1481 
1482  return valid;
1483 }
1484 
1485 static bool kvm_arch_timer_get_input_level(int vintid)
1486 {
1487  struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1488 
1489  if (WARN(!vcpu, "No vcpu context!\n"))
1490  return false;
1491 
1492  for (int i = 0; i < nr_timers(vcpu); i++) {
1493  struct arch_timer_context *ctx;
1494 
1495  ctx = vcpu_get_timer(vcpu, i);
1496  if (timer_irq(ctx) == vintid)
1497  return kvm_timer_should_fire(ctx);
1498  }
1499 
1500  /* A timer IRQ has fired, but no matching timer was found? */
1501  WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1502 
1503  return false;
1504 }
1505 
1506 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1507 {
1508  struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1509  struct timer_map map;
1510  int ret;
1511 
1512  if (timer->enabled)
1513  return 0;
1514 
1515  /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1516  if (!irqchip_in_kernel(vcpu->kvm))
1517  goto no_vgic;
1518 
1519  /*
1520  * At this stage, we have the guarantee that the vgic is both
1521  * available and initialized.
1522  */
1523  if (!timer_irqs_are_valid(vcpu)) {
1524  kvm_debug("incorrectly configured timer irqs\n");
1525  return -EINVAL;
1526  }
1527 
1528  get_timer_map(vcpu, &map);
1529 
1530  ret = kvm_vgic_map_phys_irq(vcpu,
1532  timer_irq(map.direct_vtimer),
1534  if (ret)
1535  return ret;
1536 
1537  if (map.direct_ptimer) {
1538  ret = kvm_vgic_map_phys_irq(vcpu,
1540  timer_irq(map.direct_ptimer),
1542  }
1543 
1544  if (ret)
1545  return ret;
1546 
1547 no_vgic:
1548  timer->enabled = 1;
1549  return 0;
1550 }
1551 
1552 /* If we have CNTPOFF, permanently set ECV to enable it */
1554 {
1555  if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1556  sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1557 }
1558 
1559 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1560 {
1561  int __user *uaddr = (int __user *)(long)attr->addr;
1562  int irq, idx, ret = 0;
1563 
1564  if (!irqchip_in_kernel(vcpu->kvm))
1565  return -EINVAL;
1566 
1567  if (get_user(irq, uaddr))
1568  return -EFAULT;
1569 
1570  if (!(irq_is_ppi(irq)))
1571  return -EINVAL;
1572 
1573  mutex_lock(&vcpu->kvm->arch.config_lock);
1574 
1575  if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1576  &vcpu->kvm->arch.flags)) {
1577  ret = -EBUSY;
1578  goto out;
1579  }
1580 
1581  switch (attr->attr) {
1582  case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1583  idx = TIMER_VTIMER;
1584  break;
1585  case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1586  idx = TIMER_PTIMER;
1587  break;
1588  case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1589  idx = TIMER_HVTIMER;
1590  break;
1591  case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1592  idx = TIMER_HPTIMER;
1593  break;
1594  default:
1595  ret = -ENXIO;
1596  goto out;
1597  }
1598 
1599  /*
1600  * We cannot validate the IRQ unicity before we run, so take it at
1601  * face value. The verdict will be given on first vcpu run, for each
1602  * vcpu. Yes this is late. Blame it on the stupid API.
1603  */
1604  vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1605 
1606 out:
1607  mutex_unlock(&vcpu->kvm->arch.config_lock);
1608  return ret;
1609 }
1610 
1611 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1612 {
1613  int __user *uaddr = (int __user *)(long)attr->addr;
1614  struct arch_timer_context *timer;
1615  int irq;
1616 
1617  switch (attr->attr) {
1618  case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1619  timer = vcpu_vtimer(vcpu);
1620  break;
1621  case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1622  timer = vcpu_ptimer(vcpu);
1623  break;
1624  case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1625  timer = vcpu_hvtimer(vcpu);
1626  break;
1627  case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1628  timer = vcpu_hptimer(vcpu);
1629  break;
1630  default:
1631  return -ENXIO;
1632  }
1633 
1634  irq = timer_irq(timer);
1635  return put_user(irq, uaddr);
1636 }
1637 
1638 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1639 {
1640  switch (attr->attr) {
1641  case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1642  case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1643  case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1644  case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1645  return 0;
1646  }
1647 
1648  return -ENXIO;
1649 }
1650 
1652  struct kvm_arm_counter_offset *offset)
1653 {
1654  int ret = 0;
1655 
1656  if (offset->reserved)
1657  return -EINVAL;
1658 
1659  mutex_lock(&kvm->lock);
1660 
1661  if (lock_all_vcpus(kvm)) {
1662  set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1663 
1664  /*
1665  * If userspace decides to set the offset using this
1666  * API rather than merely restoring the counter
1667  * values, the offset applies to both the virtual and
1668  * physical views.
1669  */
1670  kvm->arch.timer_data.voffset = offset->counter_offset;
1671  kvm->arch.timer_data.poffset = offset->counter_offset;
1672 
1673  unlock_all_vcpus(kvm);
1674  } else {
1675  ret = -EBUSY;
1676  }
1677 
1678  mutex_unlock(&kvm->lock);
1679 
1680  return ret;
1681 }
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:877
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
Definition: arch_timer.c:213
void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, enum kvm_arch_timers tmr, enum kvm_arch_timer_regs treg, u64 val)
Definition: arch_timer.c:1219
static void timer_save_state(struct arch_timer_context *ctx)
Definition: arch_timer.c:497
static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:571
void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:938
int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arch_timer.c:1559
static int kvm_irq_init(struct arch_timer_kvm_info *info)
Definition: arch_timer.c:1319
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1445
static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
Definition: arch_timer.c:655
static void set_cntvoff(u64 cntvoff)
Definition: arch_timer.c:486
static unsigned int host_ptimer_irq
Definition: arch_timer.c:28
static bool kvm_arch_timer_get_input_level(int vintid)
Definition: arch_timer.c:1485
static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
Definition: arch_timer.c:984
int __init kvm_timer_hyp_init(bool has_gic)
Definition: arch_timer.c:1367
static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
Definition: arch_timer.c:119
static const u8 default_ppi[]
Definition: arch_timer.c:34
static u64 read_timer_ctl(struct arch_timer_context *timer)
Definition: arch_timer.c:1091
static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs)
Definition: arch_timer.c:1299
static struct timecounter * timecounter
Definition: arch_timer.c:26
void kvm_timer_cpu_up(void)
Definition: arch_timer.c:1034
static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, struct arch_timer_context *timer, enum kvm_arch_timer_regs treg)
Definition: arch_timer.c:1132
static struct irq_ops arch_timer_irq_ops
Definition: arch_timer.c:54
static int timer_irq_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool val)
Definition: arch_timer.c:1252
u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, enum kvm_arch_timers tmr, enum kvm_arch_timer_regs treg)
Definition: arch_timer.c:1167
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:826
static bool userspace_irqchip(struct kvm *kvm)
Definition: arch_timer.c:207
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, struct arch_timer_context *timer_ctx)
Definition: arch_timer.c:445
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:430
static DEFINE_STATIC_KEY_FALSE(has_gic_active_state)
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
Definition: arch_timer.c:380
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arch_timer.c:1611
void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:927
static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg)
Definition: arch_timer.c:1290
static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx, u64 val)
Definition: arch_timer.c:256
int kvm_timer_enable(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1506
static void set_cntpoff(u64 cntpoff)
Definition: arch_timer.c:491
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:422
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1452
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:914
void kvm_timer_init_vm(struct kvm *kvm)
Definition: arch_timer.c:1028
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
Definition: arch_timer.c:224
static void timer_restore_state(struct arch_timer_context *ctx)
Definition: arch_timer.c:603
static u64 timer_get_offset(struct arch_timer_context *ctxt)
Definition: arch_timer.c:104
static void timer_irq_ack(struct irq_data *d)
Definition: arch_timer.c:1272
u64 timer_get_cval(struct arch_timer_context *ctxt)
Definition: arch_timer.c:85
static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
Definition: arch_timer.c:1242
static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:676
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:860
static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
Definition: arch_timer.c:1309
int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, struct kvm_arm_counter_offset *offset)
Definition: arch_timer.c:1651
void kvm_timer_cpu_down(void)
Definition: arch_timer.c:1041
static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:293
static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu, struct timer_map *map)
Definition: arch_timer.c:713
void kvm_timer_init_vhe(void)
Definition: arch_timer.c:1553
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
Definition: arch_timer.c:330
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
Definition: arch_timer.c:1107
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
Definition: arch_timer.c:1048
static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:596
static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
Definition: arch_timer.c:163
static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
Definition: arch_timer.c:141
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1011
static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
Definition: arch_timer.c:354
u64 kvm_phys_timer_read(void)
Definition: arch_timer.c:173
static void timer_emulate(struct arch_timer_context *ctx)
Definition: arch_timer.c:464
static struct irq_chip timer_chip
Definition: arch_timer.c:1279
static u32 host_vtimer_irq_flags
Definition: arch_timer.c:29
static void soft_timer_cancel(struct hrtimer *hrt)
Definition: arch_timer.c:219
static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:287
static int nr_timers(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:58
u32 timer_get_ctl(struct arch_timer_context *ctxt)
Definition: arch_timer.c:66
void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
Definition: arch_timer.c:178
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:307
static u32 host_ptimer_irq_flags
Definition: arch_timer.c:30
static const struct irq_domain_ops timer_domain_ops
Definition: arch_timer.c:1304
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
Definition: arch_timer.c:279
static void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
Definition: arch_timer.c:648
#define assign_clear_set_bit(_pred, _bit, _clr, _set)
Definition: arch_timer.c:705
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
Definition: arch_timer.c:274
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arch_timer.c:1638
static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
Definition: arch_timer.c:764
static unsigned int host_vtimer_irq
Definition: arch_timer.c:27
static void timer_irq_eoi(struct irq_data *d)
Definition: arch_timer.c:1266
static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, struct arch_timer_context *timer, enum kvm_arch_timer_regs treg, u64 val)
Definition: arch_timer.c:1192
bool lock_all_vcpus(struct kvm *kvm)
Definition: arm.c:1773
void unlock_all_vcpus(struct kvm *kvm)
Definition: arm.c:1765
#define vcpu_timer(v)
kvm_arch_timers
@ NR_KVM_TIMERS
@ NR_KVM_EL0_TIMERS
@ TIMER_HPTIMER
@ TIMER_VTIMER
@ TIMER_PTIMER
@ TIMER_HVTIMER
#define vcpu_ptimer(v)
static bool has_cntpoff(void)
#define vcpu_hvtimer(v)
#define arch_timer_ctx_index(ctx)
kvm_arch_timer_regs
@ TIMER_REG_VOFF
@ TIMER_REG_CTL
@ TIMER_REG_TVAL
@ TIMER_REG_CNT
@ TIMER_REG_CVAL
#define vcpu_vtimer(v)
#define vcpu_get_timer(v, t)
#define vcpu_hptimer(v)
#define timer_irq(ctx)
#define irqchip_in_kernel(k)
Definition: arm_vgic.h:392
struct vgic_global kvm_vgic_global_state
#define irq_is_ppi(irq)
Definition: arm_vgic.h:34
#define VGIC_IRQ_SW_RESAMPLE
Definition: arm_vgic.h:107
struct kvm_vcpu *__percpu * kvm_get_running_vcpus(void)
Definition: kvm_main.c:6353
struct kvm_vcpu * kvm_get_running_vcpu(void)
Definition: kvm_main.c:6338
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3915
void __kvm_timer_set_cntvoff(u64 cntvoff)
Definition: timer-sr.c:14
struct hrtimer hrtimer
struct kvm_vcpu * vcpu
struct arch_timer_offset offset
struct arch_timer_context::@18 irq
struct hrtimer bg_timer
unsigned long flags
Definition: arm_vgic.h:105
bool(* get_input_level)(int vintid)
Definition: arm_vgic.h:114
struct arch_timer_context * direct_vtimer
struct arch_timer_context * direct_ptimer
struct arch_timer_context * emul_ptimer
struct arch_timer_context * emul_vtimer
bool no_hw_deactivation
Definition: arm_vgic.h:78
int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
Definition: vgic.c:576
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
Definition: vgic.c:1022
void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
Definition: vgic.c:540
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
Definition: vgic.c:557
int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, unsigned int intid, bool level, void *owner)
Definition: vgic.c:439
int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
Definition: vgic.c:601
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, u32 vintid, struct irq_ops *ops)
Definition: vgic.c:514