KVM
kvm_main.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  * Avi Kivity <avi@qumranet.com>
13  * Yaniv Kamay <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
98 
99 /*
100  * Ordering of locks:
101  *
102  * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119  unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122  unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  * passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133  unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137  return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140  .open = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152 
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154 
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158 
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161  /*
162  * The metadata used by is_zone_device_page() to determine whether or
163  * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164  * the device has been pinned, e.g. by get_user_pages(). WARN if the
165  * page_count() is zero to help detect bad usage of this helper.
166  */
167  if (WARN_ON_ONCE(!page_count(page)))
168  return false;
169 
170  return is_zone_device_page(page);
171 }
172 
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181  struct page *page;
182 
183  if (!pfn_valid(pfn))
184  return NULL;
185 
186  page = pfn_to_page(pfn);
187  if (!PageReserved(page))
188  return page;
189 
190  /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191  if (is_zero_pfn(pfn))
192  return page;
193 
194  /*
195  * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196  * perspective they are "normal" pages, albeit with slightly different
197  * usage rules.
198  */
199  if (kvm_is_zone_device_page(page))
200  return page;
201 
202  return NULL;
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210  int cpu = get_cpu();
211 
212  __this_cpu_write(kvm_running_vcpu, vcpu);
213  preempt_notifier_register(&vcpu->preempt_notifier);
214  kvm_arch_vcpu_load(vcpu, cpu);
215  put_cpu();
216 }
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221  preempt_disable();
222  kvm_arch_vcpu_put(vcpu);
223  preempt_notifier_unregister(&vcpu->preempt_notifier);
224  __this_cpu_write(kvm_running_vcpu, NULL);
225  preempt_enable();
226 }
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232  int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234  /*
235  * We need to wait for the VCPU to reenable interrupts and get out of
236  * READING_SHADOW_PAGE_TABLES mode.
237  */
238  if (req & KVM_REQUEST_WAIT)
239  return mode != OUTSIDE_GUEST_MODE;
240 
241  /*
242  * Need to kick a running VCPU, but otherwise there is nothing to do.
243  */
244  return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_kick(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253  if (cpumask_empty(cpus))
254  return false;
255 
256  smp_call_function_many(cpus, ack_kick, NULL, wait);
257  return true;
258 }
259 
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261  struct cpumask *tmp, int current_cpu)
262 {
263  int cpu;
264 
265  if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266  __kvm_make_request(req, vcpu);
267 
268  if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269  return;
270 
271  /*
272  * Note, the vCPU could get migrated to a different pCPU at any point
273  * after kvm_request_needs_ipi(), which could result in sending an IPI
274  * to the previous pCPU. But, that's OK because the purpose of the IPI
275  * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276  * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277  * after this point is also OK, as the requirement is only that KVM wait
278  * for vCPUs that were reading SPTEs _before_ any changes were
279  * finalized. See kvm_vcpu_kick() for more details on handling requests.
280  */
281  if (kvm_request_needs_ipi(vcpu, req)) {
282  cpu = READ_ONCE(vcpu->cpu);
283  if (cpu != -1 && cpu != current_cpu)
284  __cpumask_set_cpu(cpu, tmp);
285  }
286 }
287 
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289  unsigned long *vcpu_bitmap)
290 {
291  struct kvm_vcpu *vcpu;
292  struct cpumask *cpus;
293  int i, me;
294  bool called;
295 
296  me = get_cpu();
297 
298  cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299  cpumask_clear(cpus);
300 
301  for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302  vcpu = kvm_get_vcpu(kvm, i);
303  if (!vcpu)
304  continue;
305  kvm_make_vcpu_request(vcpu, req, cpus, me);
306  }
307 
308  called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309  put_cpu();
310 
311  return called;
312 }
313 
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315  struct kvm_vcpu *except)
316 {
317  struct kvm_vcpu *vcpu;
318  struct cpumask *cpus;
319  unsigned long i;
320  bool called;
321  int me;
322 
323  me = get_cpu();
324 
325  cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326  cpumask_clear(cpus);
327 
328  kvm_for_each_vcpu(i, vcpu, kvm) {
329  if (vcpu == except)
330  continue;
331  kvm_make_vcpu_request(vcpu, req, cpus, me);
332  }
333 
334  called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335  put_cpu();
336 
337  return called;
338 }
339 
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342  return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
345 
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348  ++kvm->stat.generic.remote_tlb_flush_requests;
349 
350  /*
351  * We want to publish modifications to the page tables before reading
352  * mode. Pairs with a memory barrier in arch-specific code.
353  * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354  * and smp_mb in walk_shadow_page_lockless_begin/end.
355  * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356  *
357  * There is already an smp_mb__after_atomic() before
358  * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359  * barrier here.
360  */
362  || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363  ++kvm->stat.generic.remote_tlb_flush;
364 }
366 
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369  if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370  return;
371 
372  /*
373  * Fall back to a flushing entire TLBs if the architecture range-based
374  * TLB invalidation is unsupported or can't be performed for whatever
375  * reason.
376  */
378 }
379 
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381  const struct kvm_memory_slot *memslot)
382 {
383  /*
384  * All current use cases for flushing the TLBs for a specific memslot
385  * are related to dirty logging, and many do the TLB flush out of
386  * mmu_lock. The interaction between the various operations on memslot
387  * must be serialized by slots_locks to ensure the TLB flush from one
388  * operation is observed by any other operation on the same memslot.
389  */
390  lockdep_assert_held(&kvm->slots_lock);
391  kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393 
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
398 }
399 
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402  gfp_t gfp_flags)
403 {
404  gfp_flags |= mc->gfp_zero;
405 
406  if (mc->kmem_cache)
407  return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408  else
409  return (void *)__get_free_page(gfp_flags);
410 }
411 
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414  gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415  void *obj;
416 
417  if (mc->nobjs >= min)
418  return 0;
419 
420  if (unlikely(!mc->objects)) {
421  if (WARN_ON_ONCE(!capacity))
422  return -EIO;
423 
424  mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425  if (!mc->objects)
426  return -ENOMEM;
427 
428  mc->capacity = capacity;
429  }
430 
431  /* It is illegal to request a different capacity across topups. */
432  if (WARN_ON_ONCE(mc->capacity != capacity))
433  return -EIO;
434 
435  while (mc->nobjs < mc->capacity) {
436  obj = mmu_memory_cache_alloc_obj(mc, gfp);
437  if (!obj)
438  return mc->nobjs >= min ? 0 : -ENOMEM;
439  mc->objects[mc->nobjs++] = obj;
440  }
441  return 0;
442 }
443 
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446  return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451  return mc->nobjs;
452 }
453 
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456  while (mc->nobjs) {
457  if (mc->kmem_cache)
458  kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459  else
460  free_page((unsigned long)mc->objects[--mc->nobjs]);
461  }
462 
463  kvfree(mc->objects);
464 
465  mc->objects = NULL;
466  mc->capacity = 0;
467 }
468 
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471  void *p;
472 
473  if (WARN_ON(!mc->nobjs))
474  p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475  else
476  p = mc->objects[--mc->nobjs];
477  BUG_ON(!p);
478  return p;
479 }
480 #endif
481 
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484  mutex_init(&vcpu->mutex);
485  vcpu->cpu = -1;
486  vcpu->kvm = kvm;
487  vcpu->vcpu_id = id;
488  vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490  rcuwait_init(&vcpu->wait);
491 #endif
493 
494  kvm_vcpu_set_in_spin_loop(vcpu, false);
495  kvm_vcpu_set_dy_eligible(vcpu, false);
496  vcpu->preempted = false;
497  vcpu->ready = false;
498  preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499  vcpu->last_used_slot = NULL;
500 
501  /* Fill the stats id string for the vcpu */
502  snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503  task_pid_nr(current), id);
504 }
505 
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508  kvm_arch_vcpu_destroy(vcpu);
509  kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511  /*
512  * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513  * the vcpu->pid pointer, and at destruction time all file descriptors
514  * are already gone.
515  */
516  put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518  free_page((unsigned long)vcpu->run);
519  kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524  unsigned long i;
525  struct kvm_vcpu *vcpu;
526 
527  kvm_for_each_vcpu(i, vcpu, kvm) {
528  kvm_vcpu_destroy(vcpu);
529  xa_erase(&kvm->vcpu_array, i);
530  }
531 
532  atomic_set(&kvm->online_vcpus, 0);
533 }
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539  return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547  /*
548  * 64-bit addresses, as KVM notifiers can operate on host virtual
549  * addresses (unsigned long) and guest physical addresses (64-bit).
550  */
551  u64 start;
552  u64 end;
553  union kvm_mmu_notifier_arg arg;
554  gfn_handler_t handler;
555  on_lock_fn_t on_lock;
556  bool flush_on_ret;
557  bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569  bool ret;
570  bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler. The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587 
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
590  for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591  node; \
592  node = interval_tree_iter_next(node, start, last)) \
593 
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595  const struct kvm_mmu_notifier_range *range)
596 {
597  struct kvm_mmu_notifier_return r = {
598  .ret = false,
599  .found_memslot = false,
600  };
601  struct kvm_gfn_range gfn_range;
602  struct kvm_memory_slot *slot;
603  struct kvm_memslots *slots;
604  int i, idx;
605 
606  if (WARN_ON_ONCE(range->end <= range->start))
607  return r;
608 
609  /* A null handler is allowed if and only if on_lock() is provided. */
610  if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611  IS_KVM_NULL_FN(range->handler)))
612  return r;
613 
614  idx = srcu_read_lock(&kvm->srcu);
615 
616  for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617  struct interval_tree_node *node;
618 
619  slots = __kvm_memslots(kvm, i);
620  kvm_for_each_memslot_in_hva_range(node, slots,
621  range->start, range->end - 1) {
622  unsigned long hva_start, hva_end;
623 
624  slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625  hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626  hva_end = min_t(unsigned long, range->end,
627  slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628 
629  /*
630  * To optimize for the likely case where the address
631  * range is covered by zero or one memslots, don't
632  * bother making these conditional (to avoid writes on
633  * the second or later invocation of the handler).
634  */
635  gfn_range.arg = range->arg;
636  gfn_range.may_block = range->may_block;
637 
638  /*
639  * {gfn(page) | page intersects with [hva_start, hva_end)} =
640  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641  */
642  gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643  gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644  gfn_range.slot = slot;
645 
646  if (!r.found_memslot) {
647  r.found_memslot = true;
648  KVM_MMU_LOCK(kvm);
649  if (!IS_KVM_NULL_FN(range->on_lock))
650  range->on_lock(kvm);
651 
652  if (IS_KVM_NULL_FN(range->handler))
653  break;
654  }
655  r.ret |= range->handler(kvm, &gfn_range);
656  }
657  }
658 
659  if (range->flush_on_ret && r.ret)
661 
662  if (r.found_memslot)
663  KVM_MMU_UNLOCK(kvm);
664 
665  srcu_read_unlock(&kvm->srcu, idx);
666 
667  return r;
668 }
669 
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671  unsigned long start,
672  unsigned long end,
673  union kvm_mmu_notifier_arg arg,
674  gfn_handler_t handler)
675 {
676  struct kvm *kvm = mmu_notifier_to_kvm(mn);
677  const struct kvm_mmu_notifier_range range = {
678  .start = start,
679  .end = end,
680  .arg = arg,
681  .handler = handler,
682  .on_lock = (void *)kvm_null_fn,
683  .flush_on_ret = true,
684  .may_block = false,
685  };
686 
687  return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689 
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691  unsigned long start,
692  unsigned long end,
693  gfn_handler_t handler)
694 {
695  struct kvm *kvm = mmu_notifier_to_kvm(mn);
696  const struct kvm_mmu_notifier_range range = {
697  .start = start,
698  .end = end,
699  .handler = handler,
700  .on_lock = (void *)kvm_null_fn,
701  .flush_on_ret = false,
702  .may_block = false,
703  };
704 
705  return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707 
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710  /*
711  * Skipping invalid memslots is correct if and only change_pte() is
712  * surrounded by invalidate_range_{start,end}(), which is currently
713  * guaranteed by the primary MMU. If that ever changes, KVM needs to
714  * unmap the memslot instead of skipping the memslot to ensure that KVM
715  * doesn't hold references to the old PFN.
716  */
717  WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718 
719  if (range->slot->flags & KVM_MEMSLOT_INVALID)
720  return false;
721 
722  return kvm_set_spte_gfn(kvm, range);
723 }
724 
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726  struct mm_struct *mm,
727  unsigned long address,
728  pte_t pte)
729 {
730  struct kvm *kvm = mmu_notifier_to_kvm(mn);
731  const union kvm_mmu_notifier_arg arg = { .pte = pte };
732 
733  trace_kvm_set_spte_hva(address);
734 
735  /*
736  * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737  * If mmu_invalidate_in_progress is zero, then no in-progress
738  * invalidations, including this one, found a relevant memslot at
739  * start(); rechecking memslots here is unnecessary. Note, a false
740  * positive (count elevated by a different invalidation) is sub-optimal
741  * but functionally ok.
742  */
743  WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744  if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745  return;
746 
747  kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749 
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752  lockdep_assert_held_write(&kvm->mmu_lock);
753  /*
754  * The count increase must become visible at unlock time as no
755  * spte can be established without taking the mmu_lock and
756  * count is also read inside the mmu_lock critical section.
757  */
758  kvm->mmu_invalidate_in_progress++;
759 
760  if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761  kvm->mmu_invalidate_range_start = INVALID_GPA;
762  kvm->mmu_invalidate_range_end = INVALID_GPA;
763  }
764 }
765 
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768  lockdep_assert_held_write(&kvm->mmu_lock);
769 
770  WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771 
772  if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773  kvm->mmu_invalidate_range_start = start;
774  kvm->mmu_invalidate_range_end = end;
775  } else {
776  /*
777  * Fully tracking multiple concurrent ranges has diminishing
778  * returns. Keep things simple and just find the minimal range
779  * which includes the current and new ranges. As there won't be
780  * enough information to subtract a range after its invalidate
781  * completes, any ranges invalidated concurrently will
782  * accumulate and persist until all outstanding invalidates
783  * complete.
784  */
785  kvm->mmu_invalidate_range_start =
786  min(kvm->mmu_invalidate_range_start, start);
787  kvm->mmu_invalidate_range_end =
788  max(kvm->mmu_invalidate_range_end, end);
789  }
790 }
791 
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794  kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795  return kvm_unmap_gfn_range(kvm, range);
796 }
797 
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799  const struct mmu_notifier_range *range)
800 {
801  struct kvm *kvm = mmu_notifier_to_kvm(mn);
802  const struct kvm_mmu_notifier_range hva_range = {
803  .start = range->start,
804  .end = range->end,
805  .handler = kvm_mmu_unmap_gfn_range,
806  .on_lock = kvm_mmu_invalidate_begin,
807  .flush_on_ret = true,
808  .may_block = mmu_notifier_range_blockable(range),
809  };
810 
811  trace_kvm_unmap_hva_range(range->start, range->end);
812 
813  /*
814  * Prevent memslot modification between range_start() and range_end()
815  * so that conditionally locking provides the same result in both
816  * functions. Without that guarantee, the mmu_invalidate_in_progress
817  * adjustments will be imbalanced.
818  *
819  * Pairs with the decrement in range_end().
820  */
821  spin_lock(&kvm->mn_invalidate_lock);
822  kvm->mn_active_invalidate_count++;
823  spin_unlock(&kvm->mn_invalidate_lock);
824 
825  /*
826  * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827  * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828  * each cache's lock. There are relatively few caches in existence at
829  * any given time, and the caches themselves can check for hva overlap,
830  * i.e. don't need to rely on memslot overlap checks for performance.
831  * Because this runs without holding mmu_lock, the pfn caches must use
832  * mn_active_invalidate_count (see above) instead of
833  * mmu_invalidate_in_progress.
834  */
835  gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836  hva_range.may_block);
837 
838  /*
839  * If one or more memslots were found and thus zapped, notify arch code
840  * that guest memory has been reclaimed. This needs to be done *after*
841  * dropping mmu_lock, as x86's reclaim path is slooooow.
842  */
843  if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
845 
846  return 0;
847 }
848 
849 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 {
851  lockdep_assert_held_write(&kvm->mmu_lock);
852 
853  /*
854  * This sequence increase will notify the kvm page fault that
855  * the page that is going to be mapped in the spte could have
856  * been freed.
857  */
858  kvm->mmu_invalidate_seq++;
859  smp_wmb();
860  /*
861  * The above sequence increase must be visible before the
862  * below count decrease, which is ensured by the smp_wmb above
863  * in conjunction with the smp_rmb in mmu_invalidate_retry().
864  */
865  kvm->mmu_invalidate_in_progress--;
866  KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867 
868  /*
869  * Assert that at least one range was added between start() and end().
870  * Not adding a range isn't fatal, but it is a KVM bug.
871  */
872  WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873 }
874 
875 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876  const struct mmu_notifier_range *range)
877 {
878  struct kvm *kvm = mmu_notifier_to_kvm(mn);
879  const struct kvm_mmu_notifier_range hva_range = {
880  .start = range->start,
881  .end = range->end,
882  .handler = (void *)kvm_null_fn,
883  .on_lock = kvm_mmu_invalidate_end,
884  .flush_on_ret = false,
885  .may_block = mmu_notifier_range_blockable(range),
886  };
887  bool wake;
888 
889  __kvm_handle_hva_range(kvm, &hva_range);
890 
891  /* Pairs with the increment in range_start(). */
892  spin_lock(&kvm->mn_invalidate_lock);
893  wake = (--kvm->mn_active_invalidate_count == 0);
894  spin_unlock(&kvm->mn_invalidate_lock);
895 
896  /*
897  * There can only be one waiter, since the wait happens under
898  * slots_lock.
899  */
900  if (wake)
901  rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902 }
903 
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905  struct mm_struct *mm,
906  unsigned long start,
907  unsigned long end)
908 {
909  trace_kvm_age_hva(start, end);
910 
911  return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912  kvm_age_gfn);
913 }
914 
915 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916  struct mm_struct *mm,
917  unsigned long start,
918  unsigned long end)
919 {
920  trace_kvm_age_hva(start, end);
921 
922  /*
923  * Even though we do not flush TLB, this will still adversely
924  * affect performance on pre-Haswell Intel EPT, where there is
925  * no EPT Access Bit to clear so that we have to tear down EPT
926  * tables instead. If we find this unacceptable, we can always
927  * add a parameter to kvm_age_hva so that it effectively doesn't
928  * do anything on clear_young.
929  *
930  * Also note that currently we never issue secondary TLB flushes
931  * from clear_young, leaving this job up to the regular system
932  * cadence. If we find this inaccurate, we might come up with a
933  * more sophisticated heuristic later.
934  */
935  return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936 }
937 
938 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939  struct mm_struct *mm,
940  unsigned long address)
941 {
942  trace_kvm_test_age_hva(address);
943 
944  return kvm_handle_hva_range_no_flush(mn, address, address + 1,
946 }
947 
948 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949  struct mm_struct *mm)
950 {
951  struct kvm *kvm = mmu_notifier_to_kvm(mn);
952  int idx;
953 
954  idx = srcu_read_lock(&kvm->srcu);
956  srcu_read_unlock(&kvm->srcu, idx);
957 }
958 
959 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960  .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
961  .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
962  .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
963  .clear_young = kvm_mmu_notifier_clear_young,
964  .test_young = kvm_mmu_notifier_test_young,
965  .change_pte = kvm_mmu_notifier_change_pte,
966  .release = kvm_mmu_notifier_release,
967 };
968 
969 static int kvm_init_mmu_notifier(struct kvm *kvm)
970 {
971  kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972  return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973 }
974 
975 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976 
977 static int kvm_init_mmu_notifier(struct kvm *kvm)
978 {
979  return 0;
980 }
981 
982 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983 
984 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985 static int kvm_pm_notifier_call(struct notifier_block *bl,
986  unsigned long state,
987  void *unused)
988 {
989  struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990 
991  return kvm_arch_pm_notifier(kvm, state);
992 }
993 
994 static void kvm_init_pm_notifier(struct kvm *kvm)
995 {
996  kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997  /* Suspend KVM before we suspend ftrace, RCU, etc. */
998  kvm->pm_notifier.priority = INT_MAX;
999  register_pm_notifier(&kvm->pm_notifier);
1000 }
1001 
1002 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003 {
1004  unregister_pm_notifier(&kvm->pm_notifier);
1005 }
1006 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007 static void kvm_init_pm_notifier(struct kvm *kvm)
1008 {
1009 }
1010 
1011 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012 {
1013 }
1014 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015 
1016 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017 {
1018  if (!memslot->dirty_bitmap)
1019  return;
1020 
1021  kvfree(memslot->dirty_bitmap);
1022  memslot->dirty_bitmap = NULL;
1023 }
1024 
1025 /* This does not remove the slot from struct kvm_memslots data structures */
1026 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027 {
1028  if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029  kvm_gmem_unbind(slot);
1030 
1032 
1033  kvm_arch_free_memslot(kvm, slot);
1034 
1035  kfree(slot);
1036 }
1037 
1038 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039 {
1040  struct hlist_node *idnode;
1041  struct kvm_memory_slot *memslot;
1042  int bkt;
1043 
1044  /*
1045  * The same memslot objects live in both active and inactive sets,
1046  * arbitrarily free using index '1' so the second invocation of this
1047  * function isn't operating over a structure with dangling pointers
1048  * (even though this function isn't actually touching them).
1049  */
1050  if (!slots->node_idx)
1051  return;
1052 
1053  hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054  kvm_free_memslot(kvm, memslot);
1055 }
1056 
1057 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058 {
1059  switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060  case KVM_STATS_TYPE_INSTANT:
1061  return 0444;
1062  case KVM_STATS_TYPE_CUMULATIVE:
1063  case KVM_STATS_TYPE_PEAK:
1064  default:
1065  return 0644;
1066  }
1067 }
1068 
1069 
1070 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071 {
1072  int i;
1073  int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074  kvm_vcpu_stats_header.num_desc;
1075 
1076  if (IS_ERR(kvm->debugfs_dentry))
1077  return;
1078 
1079  debugfs_remove_recursive(kvm->debugfs_dentry);
1080 
1081  if (kvm->debugfs_stat_data) {
1082  for (i = 0; i < kvm_debugfs_num_entries; i++)
1083  kfree(kvm->debugfs_stat_data[i]);
1084  kfree(kvm->debugfs_stat_data);
1085  }
1086 }
1087 
1088 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089 {
1090  static DEFINE_MUTEX(kvm_debugfs_lock);
1091  struct dentry *dent;
1092  char dir_name[ITOA_MAX_LEN * 2];
1093  struct kvm_stat_data *stat_data;
1094  const struct _kvm_stats_desc *pdesc;
1095  int i, ret = -ENOMEM;
1096  int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097  kvm_vcpu_stats_header.num_desc;
1098 
1099  if (!debugfs_initialized())
1100  return 0;
1101 
1102  snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103  mutex_lock(&kvm_debugfs_lock);
1104  dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105  if (dent) {
1106  pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107  dput(dent);
1108  mutex_unlock(&kvm_debugfs_lock);
1109  return 0;
1110  }
1111  dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112  mutex_unlock(&kvm_debugfs_lock);
1113  if (IS_ERR(dent))
1114  return 0;
1115 
1116  kvm->debugfs_dentry = dent;
1117  kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118  sizeof(*kvm->debugfs_stat_data),
1119  GFP_KERNEL_ACCOUNT);
1120  if (!kvm->debugfs_stat_data)
1121  goto out_err;
1122 
1123  for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124  pdesc = &kvm_vm_stats_desc[i];
1125  stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126  if (!stat_data)
1127  goto out_err;
1128 
1129  stat_data->kvm = kvm;
1130  stat_data->desc = pdesc;
1131  stat_data->kind = KVM_STAT_VM;
1132  kvm->debugfs_stat_data[i] = stat_data;
1133  debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134  kvm->debugfs_dentry, stat_data,
1135  &stat_fops_per_vm);
1136  }
1137 
1138  for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139  pdesc = &kvm_vcpu_stats_desc[i];
1140  stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141  if (!stat_data)
1142  goto out_err;
1143 
1144  stat_data->kvm = kvm;
1145  stat_data->desc = pdesc;
1146  stat_data->kind = KVM_STAT_VCPU;
1147  kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148  debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149  kvm->debugfs_dentry, stat_data,
1150  &stat_fops_per_vm);
1151  }
1152 
1153  ret = kvm_arch_create_vm_debugfs(kvm);
1154  if (ret)
1155  goto out_err;
1156 
1157  return 0;
1158 out_err:
1160  return ret;
1161 }
1162 
1163 /*
1164  * Called after the VM is otherwise initialized, but just before adding it to
1165  * the vm_list.
1166  */
1167 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1168 {
1169  return 0;
1170 }
1171 
1172 /*
1173  * Called just after removing the VM from the vm_list, but before doing any
1174  * other destruction.
1175  */
1176 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1177 {
1178 }
1179 
1180 /*
1181  * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1182  * be setup already, so we can create arch-specific debugfs entries under it.
1183  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1184  * a per-arch destroy interface is not needed.
1185  */
1186 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1187 {
1188  return 0;
1189 }
1190 
1191 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1192 {
1193  struct kvm *kvm = kvm_arch_alloc_vm();
1194  struct kvm_memslots *slots;
1195  int r = -ENOMEM;
1196  int i, j;
1197 
1198  if (!kvm)
1199  return ERR_PTR(-ENOMEM);
1200 
1201  KVM_MMU_LOCK_INIT(kvm);
1202  mmgrab(current->mm);
1203  kvm->mm = current->mm;
1204  kvm_eventfd_init(kvm);
1205  mutex_init(&kvm->lock);
1206  mutex_init(&kvm->irq_lock);
1207  mutex_init(&kvm->slots_lock);
1208  mutex_init(&kvm->slots_arch_lock);
1209  spin_lock_init(&kvm->mn_invalidate_lock);
1210  rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1211  xa_init(&kvm->vcpu_array);
1212 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1213  xa_init(&kvm->mem_attr_array);
1214 #endif
1215 
1216  INIT_LIST_HEAD(&kvm->gpc_list);
1217  spin_lock_init(&kvm->gpc_lock);
1218 
1219  INIT_LIST_HEAD(&kvm->devices);
1220  kvm->max_vcpus = KVM_MAX_VCPUS;
1221 
1222  BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1223 
1224  /*
1225  * Force subsequent debugfs file creations to fail if the VM directory
1226  * is not created (by kvm_create_vm_debugfs()).
1227  */
1228  kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1229 
1230  snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1231  task_pid_nr(current));
1232 
1233  if (init_srcu_struct(&kvm->srcu))
1234  goto out_err_no_srcu;
1235  if (init_srcu_struct(&kvm->irq_srcu))
1236  goto out_err_no_irq_srcu;
1237 
1238  refcount_set(&kvm->users_count, 1);
1239  for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1240  for (j = 0; j < 2; j++) {
1241  slots = &kvm->__memslots[i][j];
1242 
1243  atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1244  slots->hva_tree = RB_ROOT_CACHED;
1245  slots->gfn_tree = RB_ROOT;
1246  hash_init(slots->id_hash);
1247  slots->node_idx = j;
1248 
1249  /* Generations must be different for each address space. */
1250  slots->generation = i;
1251  }
1252 
1253  rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1254  }
1255 
1256  for (i = 0; i < KVM_NR_BUSES; i++) {
1257  rcu_assign_pointer(kvm->buses[i],
1258  kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1259  if (!kvm->buses[i])
1260  goto out_err_no_arch_destroy_vm;
1261  }
1262 
1263  r = kvm_arch_init_vm(kvm, type);
1264  if (r)
1265  goto out_err_no_arch_destroy_vm;
1266 
1267  r = hardware_enable_all();
1268  if (r)
1269  goto out_err_no_disable;
1270 
1271 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1272  INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1273 #endif
1274 
1275  r = kvm_init_mmu_notifier(kvm);
1276  if (r)
1277  goto out_err_no_mmu_notifier;
1278 
1279  r = kvm_coalesced_mmio_init(kvm);
1280  if (r < 0)
1281  goto out_no_coalesced_mmio;
1282 
1283  r = kvm_create_vm_debugfs(kvm, fdname);
1284  if (r)
1285  goto out_err_no_debugfs;
1286 
1287  r = kvm_arch_post_init_vm(kvm);
1288  if (r)
1289  goto out_err;
1290 
1291  mutex_lock(&kvm_lock);
1292  list_add(&kvm->vm_list, &vm_list);
1293  mutex_unlock(&kvm_lock);
1294 
1295  preempt_notifier_inc();
1296  kvm_init_pm_notifier(kvm);
1297 
1298  return kvm;
1299 
1300 out_err:
1302 out_err_no_debugfs:
1304 out_no_coalesced_mmio:
1305 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1306  if (kvm->mmu_notifier.ops)
1307  mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1308 #endif
1309 out_err_no_mmu_notifier:
1311 out_err_no_disable:
1312  kvm_arch_destroy_vm(kvm);
1313 out_err_no_arch_destroy_vm:
1314  WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1315  for (i = 0; i < KVM_NR_BUSES; i++)
1316  kfree(kvm_get_bus(kvm, i));
1317  cleanup_srcu_struct(&kvm->irq_srcu);
1318 out_err_no_irq_srcu:
1319  cleanup_srcu_struct(&kvm->srcu);
1320 out_err_no_srcu:
1321  kvm_arch_free_vm(kvm);
1322  mmdrop(current->mm);
1323  return ERR_PTR(r);
1324 }
1325 
1326 static void kvm_destroy_devices(struct kvm *kvm)
1327 {
1328  struct kvm_device *dev, *tmp;
1329 
1330  /*
1331  * We do not need to take the kvm->lock here, because nobody else
1332  * has a reference to the struct kvm at this point and therefore
1333  * cannot access the devices list anyhow.
1334  */
1335  list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1336  list_del(&dev->vm_node);
1337  dev->ops->destroy(dev);
1338  }
1339 }
1340 
1341 static void kvm_destroy_vm(struct kvm *kvm)
1342 {
1343  int i;
1344  struct mm_struct *mm = kvm->mm;
1345 
1349  kvm_arch_sync_events(kvm);
1350  mutex_lock(&kvm_lock);
1351  list_del(&kvm->vm_list);
1352  mutex_unlock(&kvm_lock);
1354 
1355  kvm_free_irq_routing(kvm);
1356  for (i = 0; i < KVM_NR_BUSES; i++) {
1357  struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1358 
1359  if (bus)
1360  kvm_io_bus_destroy(bus);
1361  kvm->buses[i] = NULL;
1362  }
1364 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1365  mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1366  /*
1367  * At this point, pending calls to invalidate_range_start()
1368  * have completed but no more MMU notifiers will run, so
1369  * mn_active_invalidate_count may remain unbalanced.
1370  * No threads can be waiting in kvm_swap_active_memslots() as the
1371  * last reference on KVM has been dropped, but freeing
1372  * memslots would deadlock without this manual intervention.
1373  *
1374  * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1375  * notifier between a start() and end(), then there shouldn't be any
1376  * in-progress invalidations.
1377  */
1378  WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1379  if (kvm->mn_active_invalidate_count)
1380  kvm->mn_active_invalidate_count = 0;
1381  else
1382  WARN_ON(kvm->mmu_invalidate_in_progress);
1383 #else
1384  kvm_flush_shadow_all(kvm);
1385 #endif
1386  kvm_arch_destroy_vm(kvm);
1387  kvm_destroy_devices(kvm);
1388  for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1389  kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1390  kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1391  }
1392  cleanup_srcu_struct(&kvm->irq_srcu);
1393  cleanup_srcu_struct(&kvm->srcu);
1394 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1395  xa_destroy(&kvm->mem_attr_array);
1396 #endif
1397  kvm_arch_free_vm(kvm);
1398  preempt_notifier_dec();
1400  mmdrop(mm);
1401 }
1402 
1403 void kvm_get_kvm(struct kvm *kvm)
1404 {
1405  refcount_inc(&kvm->users_count);
1406 }
1408 
1409 /*
1410  * Make sure the vm is not during destruction, which is a safe version of
1411  * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1412  */
1413 bool kvm_get_kvm_safe(struct kvm *kvm)
1414 {
1415  return refcount_inc_not_zero(&kvm->users_count);
1416 }
1418 
1419 void kvm_put_kvm(struct kvm *kvm)
1420 {
1421  if (refcount_dec_and_test(&kvm->users_count))
1422  kvm_destroy_vm(kvm);
1423 }
1425 
1426 /*
1427  * Used to put a reference that was taken on behalf of an object associated
1428  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1429  * of the new file descriptor fails and the reference cannot be transferred to
1430  * its final owner. In such cases, the caller is still actively using @kvm and
1431  * will fail miserably if the refcount unexpectedly hits zero.
1432  */
1433 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1434 {
1435  WARN_ON(refcount_dec_and_test(&kvm->users_count));
1436 }
1438 
1439 static int kvm_vm_release(struct inode *inode, struct file *filp)
1440 {
1441  struct kvm *kvm = filp->private_data;
1442 
1443  kvm_irqfd_release(kvm);
1444 
1445  kvm_put_kvm(kvm);
1446  return 0;
1447 }
1448 
1449 /*
1450  * Allocation size is twice as large as the actual dirty bitmap size.
1451  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1452  */
1453 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1454 {
1455  unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1456 
1457  memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1458  if (!memslot->dirty_bitmap)
1459  return -ENOMEM;
1460 
1461  return 0;
1462 }
1463 
1464 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1465 {
1466  struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1467  int node_idx_inactive = active->node_idx ^ 1;
1468 
1469  return &kvm->__memslots[as_id][node_idx_inactive];
1470 }
1471 
1472 /*
1473  * Helper to get the address space ID when one of memslot pointers may be NULL.
1474  * This also serves as a sanity that at least one of the pointers is non-NULL,
1475  * and that their address space IDs don't diverge.
1476  */
1477 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1478  struct kvm_memory_slot *b)
1479 {
1480  if (WARN_ON_ONCE(!a && !b))
1481  return 0;
1482 
1483  if (!a)
1484  return b->as_id;
1485  if (!b)
1486  return a->as_id;
1487 
1488  WARN_ON_ONCE(a->as_id != b->as_id);
1489  return a->as_id;
1490 }
1491 
1492 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1493  struct kvm_memory_slot *slot)
1494 {
1495  struct rb_root *gfn_tree = &slots->gfn_tree;
1496  struct rb_node **node, *parent;
1497  int idx = slots->node_idx;
1498 
1499  parent = NULL;
1500  for (node = &gfn_tree->rb_node; *node; ) {
1501  struct kvm_memory_slot *tmp;
1502 
1503  tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1504  parent = *node;
1505  if (slot->base_gfn < tmp->base_gfn)
1506  node = &(*node)->rb_left;
1507  else if (slot->base_gfn > tmp->base_gfn)
1508  node = &(*node)->rb_right;
1509  else
1510  BUG();
1511  }
1512 
1513  rb_link_node(&slot->gfn_node[idx], parent, node);
1514  rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1515 }
1516 
1517 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1518  struct kvm_memory_slot *slot)
1519 {
1520  rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1521 }
1522 
1523 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1524  struct kvm_memory_slot *old,
1525  struct kvm_memory_slot *new)
1526 {
1527  int idx = slots->node_idx;
1528 
1529  WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1530 
1531  rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1532  &slots->gfn_tree);
1533 }
1534 
1535 /*
1536  * Replace @old with @new in the inactive memslots.
1537  *
1538  * With NULL @old this simply adds @new.
1539  * With NULL @new this simply removes @old.
1540  *
1541  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1542  * appropriately.
1543  */
1544 static void kvm_replace_memslot(struct kvm *kvm,
1545  struct kvm_memory_slot *old,
1546  struct kvm_memory_slot *new)
1547 {
1548  int as_id = kvm_memslots_get_as_id(old, new);
1549  struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550  int idx = slots->node_idx;
1551 
1552  if (old) {
1553  hash_del(&old->id_node[idx]);
1554  interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1555 
1556  if ((long)old == atomic_long_read(&slots->last_used_slot))
1557  atomic_long_set(&slots->last_used_slot, (long)new);
1558 
1559  if (!new) {
1560  kvm_erase_gfn_node(slots, old);
1561  return;
1562  }
1563  }
1564 
1565  /*
1566  * Initialize @new's hva range. Do this even when replacing an @old
1567  * slot, kvm_copy_memslot() deliberately does not touch node data.
1568  */
1569  new->hva_node[idx].start = new->userspace_addr;
1570  new->hva_node[idx].last = new->userspace_addr +
1571  (new->npages << PAGE_SHIFT) - 1;
1572 
1573  /*
1574  * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1575  * hva_node needs to be swapped with remove+insert even though hva can't
1576  * change when replacing an existing slot.
1577  */
1578  hash_add(slots->id_hash, &new->id_node[idx], new->id);
1579  interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1580 
1581  /*
1582  * If the memslot gfn is unchanged, rb_replace_node() can be used to
1583  * switch the node in the gfn tree instead of removing the old and
1584  * inserting the new as two separate operations. Replacement is a
1585  * single O(1) operation versus two O(log(n)) operations for
1586  * remove+insert.
1587  */
1588  if (old && old->base_gfn == new->base_gfn) {
1589  kvm_replace_gfn_node(slots, old, new);
1590  } else {
1591  if (old)
1592  kvm_erase_gfn_node(slots, old);
1593  kvm_insert_gfn_node(slots, new);
1594  }
1595 }
1596 
1597 /*
1598  * Flags that do not access any of the extra space of struct
1599  * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1600  * only allows these.
1601  */
1602 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1603  (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1604 
1605 static int check_memory_region_flags(struct kvm *kvm,
1606  const struct kvm_userspace_memory_region2 *mem)
1607 {
1608  u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1609 
1610  if (kvm_arch_has_private_mem(kvm))
1611  valid_flags |= KVM_MEM_GUEST_MEMFD;
1612 
1613  /* Dirty logging private memory is not currently supported. */
1614  if (mem->flags & KVM_MEM_GUEST_MEMFD)
1615  valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1616 
1617 #ifdef __KVM_HAVE_READONLY_MEM
1618  /*
1619  * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1620  * read-only memslots have emulated MMIO, not page fault, semantics,
1621  * and KVM doesn't allow emulated MMIO for private memory.
1622  */
1623  if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1624  valid_flags |= KVM_MEM_READONLY;
1625 #endif
1626 
1627  if (mem->flags & ~valid_flags)
1628  return -EINVAL;
1629 
1630  return 0;
1631 }
1632 
1633 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1634 {
1635  struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1636 
1637  /* Grab the generation from the activate memslots. */
1638  u64 gen = __kvm_memslots(kvm, as_id)->generation;
1639 
1640  WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1641  slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1642 
1643  /*
1644  * Do not store the new memslots while there are invalidations in
1645  * progress, otherwise the locking in invalidate_range_start and
1646  * invalidate_range_end will be unbalanced.
1647  */
1648  spin_lock(&kvm->mn_invalidate_lock);
1649  prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1650  while (kvm->mn_active_invalidate_count) {
1651  set_current_state(TASK_UNINTERRUPTIBLE);
1652  spin_unlock(&kvm->mn_invalidate_lock);
1653  schedule();
1654  spin_lock(&kvm->mn_invalidate_lock);
1655  }
1656  finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1657  rcu_assign_pointer(kvm->memslots[as_id], slots);
1658  spin_unlock(&kvm->mn_invalidate_lock);
1659 
1660  /*
1661  * Acquired in kvm_set_memslot. Must be released before synchronize
1662  * SRCU below in order to avoid deadlock with another thread
1663  * acquiring the slots_arch_lock in an srcu critical section.
1664  */
1665  mutex_unlock(&kvm->slots_arch_lock);
1666 
1667  synchronize_srcu_expedited(&kvm->srcu);
1668 
1669  /*
1670  * Increment the new memslot generation a second time, dropping the
1671  * update in-progress flag and incrementing the generation based on
1672  * the number of address spaces. This provides a unique and easily
1673  * identifiable generation number while the memslots are in flux.
1674  */
1675  gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1676 
1677  /*
1678  * Generations must be unique even across address spaces. We do not need
1679  * a global counter for that, instead the generation space is evenly split
1680  * across address spaces. For example, with two address spaces, address
1681  * space 0 will use generations 0, 2, 4, ... while address space 1 will
1682  * use generations 1, 3, 5, ...
1683  */
1684  gen += kvm_arch_nr_memslot_as_ids(kvm);
1685 
1686  kvm_arch_memslots_updated(kvm, gen);
1687 
1688  slots->generation = gen;
1689 }
1690 
1691 static int kvm_prepare_memory_region(struct kvm *kvm,
1692  const struct kvm_memory_slot *old,
1693  struct kvm_memory_slot *new,
1694  enum kvm_mr_change change)
1695 {
1696  int r;
1697 
1698  /*
1699  * If dirty logging is disabled, nullify the bitmap; the old bitmap
1700  * will be freed on "commit". If logging is enabled in both old and
1701  * new, reuse the existing bitmap. If logging is enabled only in the
1702  * new and KVM isn't using a ring buffer, allocate and initialize a
1703  * new bitmap.
1704  */
1705  if (change != KVM_MR_DELETE) {
1706  if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1707  new->dirty_bitmap = NULL;
1708  else if (old && old->dirty_bitmap)
1709  new->dirty_bitmap = old->dirty_bitmap;
1710  else if (kvm_use_dirty_bitmap(kvm)) {
1711  r = kvm_alloc_dirty_bitmap(new);
1712  if (r)
1713  return r;
1714 
1715  if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1716  bitmap_set(new->dirty_bitmap, 0, new->npages);
1717  }
1718  }
1719 
1720  r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1721 
1722  /* Free the bitmap on failure if it was allocated above. */
1723  if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1725 
1726  return r;
1727 }
1728 
1729 static void kvm_commit_memory_region(struct kvm *kvm,
1730  struct kvm_memory_slot *old,
1731  const struct kvm_memory_slot *new,
1732  enum kvm_mr_change change)
1733 {
1734  int old_flags = old ? old->flags : 0;
1735  int new_flags = new ? new->flags : 0;
1736  /*
1737  * Update the total number of memslot pages before calling the arch
1738  * hook so that architectures can consume the result directly.
1739  */
1740  if (change == KVM_MR_DELETE)
1741  kvm->nr_memslot_pages -= old->npages;
1742  else if (change == KVM_MR_CREATE)
1743  kvm->nr_memslot_pages += new->npages;
1744 
1745  if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1746  int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1747  atomic_set(&kvm->nr_memslots_dirty_logging,
1748  atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1749  }
1750 
1751  kvm_arch_commit_memory_region(kvm, old, new, change);
1752 
1753  switch (change) {
1754  case KVM_MR_CREATE:
1755  /* Nothing more to do. */
1756  break;
1757  case KVM_MR_DELETE:
1758  /* Free the old memslot and all its metadata. */
1759  kvm_free_memslot(kvm, old);
1760  break;
1761  case KVM_MR_MOVE:
1762  case KVM_MR_FLAGS_ONLY:
1763  /*
1764  * Free the dirty bitmap as needed; the below check encompasses
1765  * both the flags and whether a ring buffer is being used)
1766  */
1767  if (old->dirty_bitmap && !new->dirty_bitmap)
1769 
1770  /*
1771  * The final quirk. Free the detached, old slot, but only its
1772  * memory, not any metadata. Metadata, including arch specific
1773  * data, may be reused by @new.
1774  */
1775  kfree(old);
1776  break;
1777  default:
1778  BUG();
1779  }
1780 }
1781 
1782 /*
1783  * Activate @new, which must be installed in the inactive slots by the caller,
1784  * by swapping the active slots and then propagating @new to @old once @old is
1785  * unreachable and can be safely modified.
1786  *
1787  * With NULL @old this simply adds @new to @active (while swapping the sets).
1788  * With NULL @new this simply removes @old from @active and frees it
1789  * (while also swapping the sets).
1790  */
1791 static void kvm_activate_memslot(struct kvm *kvm,
1792  struct kvm_memory_slot *old,
1793  struct kvm_memory_slot *new)
1794 {
1795  int as_id = kvm_memslots_get_as_id(old, new);
1796 
1797  kvm_swap_active_memslots(kvm, as_id);
1798 
1799  /* Propagate the new memslot to the now inactive memslots. */
1800  kvm_replace_memslot(kvm, old, new);
1801 }
1802 
1803 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1804  const struct kvm_memory_slot *src)
1805 {
1806  dest->base_gfn = src->base_gfn;
1807  dest->npages = src->npages;
1808  dest->dirty_bitmap = src->dirty_bitmap;
1809  dest->arch = src->arch;
1810  dest->userspace_addr = src->userspace_addr;
1811  dest->flags = src->flags;
1812  dest->id = src->id;
1813  dest->as_id = src->as_id;
1814 }
1815 
1816 static void kvm_invalidate_memslot(struct kvm *kvm,
1817  struct kvm_memory_slot *old,
1818  struct kvm_memory_slot *invalid_slot)
1819 {
1820  /*
1821  * Mark the current slot INVALID. As with all memslot modifications,
1822  * this must be done on an unreachable slot to avoid modifying the
1823  * current slot in the active tree.
1824  */
1825  kvm_copy_memslot(invalid_slot, old);
1826  invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1827  kvm_replace_memslot(kvm, old, invalid_slot);
1828 
1829  /*
1830  * Activate the slot that is now marked INVALID, but don't propagate
1831  * the slot to the now inactive slots. The slot is either going to be
1832  * deleted or recreated as a new slot.
1833  */
1834  kvm_swap_active_memslots(kvm, old->as_id);
1835 
1836  /*
1837  * From this point no new shadow pages pointing to a deleted, or moved,
1838  * memslot will be created. Validation of sp->gfn happens in:
1839  * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1840  * - kvm_is_visible_gfn (mmu_check_root)
1841  */
1844 
1845  /* Was released by kvm_swap_active_memslots(), reacquire. */
1846  mutex_lock(&kvm->slots_arch_lock);
1847 
1848  /*
1849  * Copy the arch-specific field of the newly-installed slot back to the
1850  * old slot as the arch data could have changed between releasing
1851  * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1852  * above. Writers are required to retrieve memslots *after* acquiring
1853  * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1854  */
1855  old->arch = invalid_slot->arch;
1856 }
1857 
1858 static void kvm_create_memslot(struct kvm *kvm,
1859  struct kvm_memory_slot *new)
1860 {
1861  /* Add the new memslot to the inactive set and activate. */
1862  kvm_replace_memslot(kvm, NULL, new);
1863  kvm_activate_memslot(kvm, NULL, new);
1864 }
1865 
1866 static void kvm_delete_memslot(struct kvm *kvm,
1867  struct kvm_memory_slot *old,
1868  struct kvm_memory_slot *invalid_slot)
1869 {
1870  /*
1871  * Remove the old memslot (in the inactive memslots) by passing NULL as
1872  * the "new" slot, and for the invalid version in the active slots.
1873  */
1874  kvm_replace_memslot(kvm, old, NULL);
1875  kvm_activate_memslot(kvm, invalid_slot, NULL);
1876 }
1877 
1878 static void kvm_move_memslot(struct kvm *kvm,
1879  struct kvm_memory_slot *old,
1880  struct kvm_memory_slot *new,
1881  struct kvm_memory_slot *invalid_slot)
1882 {
1883  /*
1884  * Replace the old memslot in the inactive slots, and then swap slots
1885  * and replace the current INVALID with the new as well.
1886  */
1887  kvm_replace_memslot(kvm, old, new);
1888  kvm_activate_memslot(kvm, invalid_slot, new);
1889 }
1890 
1891 static void kvm_update_flags_memslot(struct kvm *kvm,
1892  struct kvm_memory_slot *old,
1893  struct kvm_memory_slot *new)
1894 {
1895  /*
1896  * Similar to the MOVE case, but the slot doesn't need to be zapped as
1897  * an intermediate step. Instead, the old memslot is simply replaced
1898  * with a new, updated copy in both memslot sets.
1899  */
1900  kvm_replace_memslot(kvm, old, new);
1901  kvm_activate_memslot(kvm, old, new);
1902 }
1903 
1904 static int kvm_set_memslot(struct kvm *kvm,
1905  struct kvm_memory_slot *old,
1906  struct kvm_memory_slot *new,
1907  enum kvm_mr_change change)
1908 {
1909  struct kvm_memory_slot *invalid_slot;
1910  int r;
1911 
1912  /*
1913  * Released in kvm_swap_active_memslots().
1914  *
1915  * Must be held from before the current memslots are copied until after
1916  * the new memslots are installed with rcu_assign_pointer, then
1917  * released before the synchronize srcu in kvm_swap_active_memslots().
1918  *
1919  * When modifying memslots outside of the slots_lock, must be held
1920  * before reading the pointer to the current memslots until after all
1921  * changes to those memslots are complete.
1922  *
1923  * These rules ensure that installing new memslots does not lose
1924  * changes made to the previous memslots.
1925  */
1926  mutex_lock(&kvm->slots_arch_lock);
1927 
1928  /*
1929  * Invalidate the old slot if it's being deleted or moved. This is
1930  * done prior to actually deleting/moving the memslot to allow vCPUs to
1931  * continue running by ensuring there are no mappings or shadow pages
1932  * for the memslot when it is deleted/moved. Without pre-invalidation
1933  * (and without a lock), a window would exist between effecting the
1934  * delete/move and committing the changes in arch code where KVM or a
1935  * guest could access a non-existent memslot.
1936  *
1937  * Modifications are done on a temporary, unreachable slot. The old
1938  * slot needs to be preserved in case a later step fails and the
1939  * invalidation needs to be reverted.
1940  */
1941  if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1942  invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1943  if (!invalid_slot) {
1944  mutex_unlock(&kvm->slots_arch_lock);
1945  return -ENOMEM;
1946  }
1947  kvm_invalidate_memslot(kvm, old, invalid_slot);
1948  }
1949 
1950  r = kvm_prepare_memory_region(kvm, old, new, change);
1951  if (r) {
1952  /*
1953  * For DELETE/MOVE, revert the above INVALID change. No
1954  * modifications required since the original slot was preserved
1955  * in the inactive slots. Changing the active memslots also
1956  * release slots_arch_lock.
1957  */
1958  if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1959  kvm_activate_memslot(kvm, invalid_slot, old);
1960  kfree(invalid_slot);
1961  } else {
1962  mutex_unlock(&kvm->slots_arch_lock);
1963  }
1964  return r;
1965  }
1966 
1967  /*
1968  * For DELETE and MOVE, the working slot is now active as the INVALID
1969  * version of the old slot. MOVE is particularly special as it reuses
1970  * the old slot and returns a copy of the old slot (in working_slot).
1971  * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1972  * old slot is detached but otherwise preserved.
1973  */
1974  if (change == KVM_MR_CREATE)
1975  kvm_create_memslot(kvm, new);
1976  else if (change == KVM_MR_DELETE)
1977  kvm_delete_memslot(kvm, old, invalid_slot);
1978  else if (change == KVM_MR_MOVE)
1979  kvm_move_memslot(kvm, old, new, invalid_slot);
1980  else if (change == KVM_MR_FLAGS_ONLY)
1981  kvm_update_flags_memslot(kvm, old, new);
1982  else
1983  BUG();
1984 
1985  /* Free the temporary INVALID slot used for DELETE and MOVE. */
1986  if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1987  kfree(invalid_slot);
1988 
1989  /*
1990  * No need to refresh new->arch, changes after dropping slots_arch_lock
1991  * will directly hit the final, active memslot. Architectures are
1992  * responsible for knowing that new->arch may be stale.
1993  */
1994  kvm_commit_memory_region(kvm, old, new, change);
1995 
1996  return 0;
1997 }
1998 
1999 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2000  gfn_t start, gfn_t end)
2001 {
2002  struct kvm_memslot_iter iter;
2003 
2004  kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2005  if (iter.slot->id != id)
2006  return true;
2007  }
2008 
2009  return false;
2010 }
2011 
2012 /*
2013  * Allocate some memory and give it an address in the guest physical address
2014  * space.
2015  *
2016  * Discontiguous memory is allowed, mostly for framebuffers.
2017  *
2018  * Must be called holding kvm->slots_lock for write.
2019  */
2020 int __kvm_set_memory_region(struct kvm *kvm,
2021  const struct kvm_userspace_memory_region2 *mem)
2022 {
2023  struct kvm_memory_slot *old, *new;
2024  struct kvm_memslots *slots;
2025  enum kvm_mr_change change;
2026  unsigned long npages;
2027  gfn_t base_gfn;
2028  int as_id, id;
2029  int r;
2030 
2031  r = check_memory_region_flags(kvm, mem);
2032  if (r)
2033  return r;
2034 
2035  as_id = mem->slot >> 16;
2036  id = (u16)mem->slot;
2037 
2038  /* General sanity checks */
2039  if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2040  (mem->memory_size != (unsigned long)mem->memory_size))
2041  return -EINVAL;
2042  if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2043  return -EINVAL;
2044  /* We can read the guest memory with __xxx_user() later on. */
2045  if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2046  (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2047  !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2048  mem->memory_size))
2049  return -EINVAL;
2050  if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2051  (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2052  mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2053  return -EINVAL;
2054  if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2055  return -EINVAL;
2056  if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2057  return -EINVAL;
2058  if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2059  return -EINVAL;
2060 
2061  slots = __kvm_memslots(kvm, as_id);
2062 
2063  /*
2064  * Note, the old memslot (and the pointer itself!) may be invalidated
2065  * and/or destroyed by kvm_set_memslot().
2066  */
2067  old = id_to_memslot(slots, id);
2068 
2069  if (!mem->memory_size) {
2070  if (!old || !old->npages)
2071  return -EINVAL;
2072 
2073  if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2074  return -EIO;
2075 
2076  return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2077  }
2078 
2079  base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2080  npages = (mem->memory_size >> PAGE_SHIFT);
2081 
2082  if (!old || !old->npages) {
2083  change = KVM_MR_CREATE;
2084 
2085  /*
2086  * To simplify KVM internals, the total number of pages across
2087  * all memslots must fit in an unsigned long.
2088  */
2089  if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2090  return -EINVAL;
2091  } else { /* Modify an existing slot. */
2092  /* Private memslots are immutable, they can only be deleted. */
2093  if (mem->flags & KVM_MEM_GUEST_MEMFD)
2094  return -EINVAL;
2095  if ((mem->userspace_addr != old->userspace_addr) ||
2096  (npages != old->npages) ||
2097  ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2098  return -EINVAL;
2099 
2100  if (base_gfn != old->base_gfn)
2101  change = KVM_MR_MOVE;
2102  else if (mem->flags != old->flags)
2103  change = KVM_MR_FLAGS_ONLY;
2104  else /* Nothing to change. */
2105  return 0;
2106  }
2107 
2108  if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2109  kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2110  return -EEXIST;
2111 
2112  /* Allocate a slot that will persist in the memslot. */
2113  new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2114  if (!new)
2115  return -ENOMEM;
2116 
2117  new->as_id = as_id;
2118  new->id = id;
2119  new->base_gfn = base_gfn;
2120  new->npages = npages;
2121  new->flags = mem->flags;
2122  new->userspace_addr = mem->userspace_addr;
2123  if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2124  r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2125  if (r)
2126  goto out;
2127  }
2128 
2129  r = kvm_set_memslot(kvm, old, new, change);
2130  if (r)
2131  goto out_unbind;
2132 
2133  return 0;
2134 
2135 out_unbind:
2136  if (mem->flags & KVM_MEM_GUEST_MEMFD)
2137  kvm_gmem_unbind(new);
2138 out:
2139  kfree(new);
2140  return r;
2141 }
2143 
2144 int kvm_set_memory_region(struct kvm *kvm,
2145  const struct kvm_userspace_memory_region2 *mem)
2146 {
2147  int r;
2148 
2149  mutex_lock(&kvm->slots_lock);
2150  r = __kvm_set_memory_region(kvm, mem);
2151  mutex_unlock(&kvm->slots_lock);
2152  return r;
2153 }
2155 
2156 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2157  struct kvm_userspace_memory_region2 *mem)
2158 {
2159  if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2160  return -EINVAL;
2161 
2162  return kvm_set_memory_region(kvm, mem);
2163 }
2164 
2165 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2166 /**
2167  * kvm_get_dirty_log - get a snapshot of dirty pages
2168  * @kvm: pointer to kvm instance
2169  * @log: slot id and address to which we copy the log
2170  * @is_dirty: set to '1' if any dirty pages were found
2171  * @memslot: set to the associated memslot, always valid on success
2172  */
2173 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2174  int *is_dirty, struct kvm_memory_slot **memslot)
2175 {
2176  struct kvm_memslots *slots;
2177  int i, as_id, id;
2178  unsigned long n;
2179  unsigned long any = 0;
2180 
2181  /* Dirty ring tracking may be exclusive to dirty log tracking */
2182  if (!kvm_use_dirty_bitmap(kvm))
2183  return -ENXIO;
2184 
2185  *memslot = NULL;
2186  *is_dirty = 0;
2187 
2188  as_id = log->slot >> 16;
2189  id = (u16)log->slot;
2190  if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2191  return -EINVAL;
2192 
2193  slots = __kvm_memslots(kvm, as_id);
2194  *memslot = id_to_memslot(slots, id);
2195  if (!(*memslot) || !(*memslot)->dirty_bitmap)
2196  return -ENOENT;
2197 
2198  kvm_arch_sync_dirty_log(kvm, *memslot);
2199 
2200  n = kvm_dirty_bitmap_bytes(*memslot);
2201 
2202  for (i = 0; !any && i < n/sizeof(long); ++i)
2203  any = (*memslot)->dirty_bitmap[i];
2204 
2205  if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2206  return -EFAULT;
2207 
2208  if (any)
2209  *is_dirty = 1;
2210  return 0;
2211 }
2213 
2214 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2215 /**
2216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2217  * and reenable dirty page tracking for the corresponding pages.
2218  * @kvm: pointer to kvm instance
2219  * @log: slot id and address to which we copy the log
2220  *
2221  * We need to keep it in mind that VCPU threads can write to the bitmap
2222  * concurrently. So, to avoid losing track of dirty pages we keep the
2223  * following order:
2224  *
2225  * 1. Take a snapshot of the bit and clear it if needed.
2226  * 2. Write protect the corresponding page.
2227  * 3. Copy the snapshot to the userspace.
2228  * 4. Upon return caller flushes TLB's if needed.
2229  *
2230  * Between 2 and 4, the guest may write to the page using the remaining TLB
2231  * entry. This is not a problem because the page is reported dirty using
2232  * the snapshot taken before and step 4 ensures that writes done after
2233  * exiting to userspace will be logged for the next call.
2234  *
2235  */
2236 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2237 {
2238  struct kvm_memslots *slots;
2239  struct kvm_memory_slot *memslot;
2240  int i, as_id, id;
2241  unsigned long n;
2242  unsigned long *dirty_bitmap;
2243  unsigned long *dirty_bitmap_buffer;
2244  bool flush;
2245 
2246  /* Dirty ring tracking may be exclusive to dirty log tracking */
2247  if (!kvm_use_dirty_bitmap(kvm))
2248  return -ENXIO;
2249 
2250  as_id = log->slot >> 16;
2251  id = (u16)log->slot;
2252  if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2253  return -EINVAL;
2254 
2255  slots = __kvm_memslots(kvm, as_id);
2256  memslot = id_to_memslot(slots, id);
2257  if (!memslot || !memslot->dirty_bitmap)
2258  return -ENOENT;
2259 
2260  dirty_bitmap = memslot->dirty_bitmap;
2261 
2262  kvm_arch_sync_dirty_log(kvm, memslot);
2263 
2264  n = kvm_dirty_bitmap_bytes(memslot);
2265  flush = false;
2266  if (kvm->manual_dirty_log_protect) {
2267  /*
2268  * Unlike kvm_get_dirty_log, we always return false in *flush,
2269  * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2270  * is some code duplication between this function and
2271  * kvm_get_dirty_log, but hopefully all architecture
2272  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2273  * can be eliminated.
2274  */
2275  dirty_bitmap_buffer = dirty_bitmap;
2276  } else {
2277  dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2278  memset(dirty_bitmap_buffer, 0, n);
2279 
2280  KVM_MMU_LOCK(kvm);
2281  for (i = 0; i < n / sizeof(long); i++) {
2282  unsigned long mask;
2283  gfn_t offset;
2284 
2285  if (!dirty_bitmap[i])
2286  continue;
2287 
2288  flush = true;
2289  mask = xchg(&dirty_bitmap[i], 0);
2290  dirty_bitmap_buffer[i] = mask;
2291 
2292  offset = i * BITS_PER_LONG;
2294  offset, mask);
2295  }
2296  KVM_MMU_UNLOCK(kvm);
2297  }
2298 
2299  if (flush)
2300  kvm_flush_remote_tlbs_memslot(kvm, memslot);
2301 
2302  if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2303  return -EFAULT;
2304  return 0;
2305 }
2306 
2307 
2308 /**
2309  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2310  * @kvm: kvm instance
2311  * @log: slot id and address to which we copy the log
2312  *
2313  * Steps 1-4 below provide general overview of dirty page logging. See
2314  * kvm_get_dirty_log_protect() function description for additional details.
2315  *
2316  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2317  * always flush the TLB (step 4) even if previous step failed and the dirty
2318  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2319  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2320  * writes will be marked dirty for next log read.
2321  *
2322  * 1. Take a snapshot of the bit and clear it if needed.
2323  * 2. Write protect the corresponding page.
2324  * 3. Copy the snapshot to the userspace.
2325  * 4. Flush TLB's if needed.
2326  */
2327 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2328  struct kvm_dirty_log *log)
2329 {
2330  int r;
2331 
2332  mutex_lock(&kvm->slots_lock);
2333 
2334  r = kvm_get_dirty_log_protect(kvm, log);
2335 
2336  mutex_unlock(&kvm->slots_lock);
2337  return r;
2338 }
2339 
2340 /**
2341  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2342  * and reenable dirty page tracking for the corresponding pages.
2343  * @kvm: pointer to kvm instance
2344  * @log: slot id and address from which to fetch the bitmap of dirty pages
2345  */
2346 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2347  struct kvm_clear_dirty_log *log)
2348 {
2349  struct kvm_memslots *slots;
2350  struct kvm_memory_slot *memslot;
2351  int as_id, id;
2352  gfn_t offset;
2353  unsigned long i, n;
2354  unsigned long *dirty_bitmap;
2355  unsigned long *dirty_bitmap_buffer;
2356  bool flush;
2357 
2358  /* Dirty ring tracking may be exclusive to dirty log tracking */
2359  if (!kvm_use_dirty_bitmap(kvm))
2360  return -ENXIO;
2361 
2362  as_id = log->slot >> 16;
2363  id = (u16)log->slot;
2364  if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2365  return -EINVAL;
2366 
2367  if (log->first_page & 63)
2368  return -EINVAL;
2369 
2370  slots = __kvm_memslots(kvm, as_id);
2371  memslot = id_to_memslot(slots, id);
2372  if (!memslot || !memslot->dirty_bitmap)
2373  return -ENOENT;
2374 
2375  dirty_bitmap = memslot->dirty_bitmap;
2376 
2377  n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2378 
2379  if (log->first_page > memslot->npages ||
2380  log->num_pages > memslot->npages - log->first_page ||
2381  (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2382  return -EINVAL;
2383 
2384  kvm_arch_sync_dirty_log(kvm, memslot);
2385 
2386  flush = false;
2387  dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2388  if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2389  return -EFAULT;
2390 
2391  KVM_MMU_LOCK(kvm);
2392  for (offset = log->first_page, i = offset / BITS_PER_LONG,
2393  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2394  i++, offset += BITS_PER_LONG) {
2395  unsigned long mask = *dirty_bitmap_buffer++;
2396  atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2397  if (!mask)
2398  continue;
2399 
2400  mask &= atomic_long_fetch_andnot(mask, p);
2401 
2402  /*
2403  * mask contains the bits that really have been cleared. This
2404  * never includes any bits beyond the length of the memslot (if
2405  * the length is not aligned to 64 pages), therefore it is not
2406  * a problem if userspace sets them in log->dirty_bitmap.
2407  */
2408  if (mask) {
2409  flush = true;
2411  offset, mask);
2412  }
2413  }
2414  KVM_MMU_UNLOCK(kvm);
2415 
2416  if (flush)
2417  kvm_flush_remote_tlbs_memslot(kvm, memslot);
2418 
2419  return 0;
2420 }
2421 
2422 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2423  struct kvm_clear_dirty_log *log)
2424 {
2425  int r;
2426 
2427  mutex_lock(&kvm->slots_lock);
2428 
2429  r = kvm_clear_dirty_log_protect(kvm, log);
2430 
2431  mutex_unlock(&kvm->slots_lock);
2432  return r;
2433 }
2434 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2435 
2436 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2437 /*
2438  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2439  * matching @attrs.
2440  */
2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2442  unsigned long attrs)
2443 {
2444  XA_STATE(xas, &kvm->mem_attr_array, start);
2445  unsigned long index;
2446  bool has_attrs;
2447  void *entry;
2448 
2449  rcu_read_lock();
2450 
2451  if (!attrs) {
2452  has_attrs = !xas_find(&xas, end - 1);
2453  goto out;
2454  }
2455 
2456  has_attrs = true;
2457  for (index = start; index < end; index++) {
2458  do {
2459  entry = xas_next(&xas);
2460  } while (xas_retry(&xas, entry));
2461 
2462  if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2463  has_attrs = false;
2464  break;
2465  }
2466  }
2467 
2468 out:
2469  rcu_read_unlock();
2470  return has_attrs;
2471 }
2472 
2473 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2474 {
2475  if (!kvm || kvm_arch_has_private_mem(kvm))
2476  return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2477 
2478  return 0;
2479 }
2480 
2481 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2482  struct kvm_mmu_notifier_range *range)
2483 {
2484  struct kvm_gfn_range gfn_range;
2485  struct kvm_memory_slot *slot;
2486  struct kvm_memslots *slots;
2487  struct kvm_memslot_iter iter;
2488  bool found_memslot = false;
2489  bool ret = false;
2490  int i;
2491 
2492  gfn_range.arg = range->arg;
2493  gfn_range.may_block = range->may_block;
2494 
2495  for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2496  slots = __kvm_memslots(kvm, i);
2497 
2498  kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2499  slot = iter.slot;
2500  gfn_range.slot = slot;
2501 
2502  gfn_range.start = max(range->start, slot->base_gfn);
2503  gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2504  if (gfn_range.start >= gfn_range.end)
2505  continue;
2506 
2507  if (!found_memslot) {
2508  found_memslot = true;
2509  KVM_MMU_LOCK(kvm);
2510  if (!IS_KVM_NULL_FN(range->on_lock))
2511  range->on_lock(kvm);
2512  }
2513 
2514  ret |= range->handler(kvm, &gfn_range);
2515  }
2516  }
2517 
2518  if (range->flush_on_ret && ret)
2519  kvm_flush_remote_tlbs(kvm);
2520 
2521  if (found_memslot)
2522  KVM_MMU_UNLOCK(kvm);
2523 }
2524 
2525 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2526  struct kvm_gfn_range *range)
2527 {
2528  /*
2529  * Unconditionally add the range to the invalidation set, regardless of
2530  * whether or not the arch callback actually needs to zap SPTEs. E.g.
2531  * if KVM supports RWX attributes in the future and the attributes are
2532  * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2533  * adding the range allows KVM to require that MMU invalidations add at
2534  * least one range between begin() and end(), e.g. allows KVM to detect
2535  * bugs where the add() is missed. Relaxing the rule *might* be safe,
2536  * but it's not obvious that allowing new mappings while the attributes
2537  * are in flux is desirable or worth the complexity.
2538  */
2539  kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2540 
2541  return kvm_arch_pre_set_memory_attributes(kvm, range);
2542 }
2543 
2544 /* Set @attributes for the gfn range [@start, @end). */
2545 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2546  unsigned long attributes)
2547 {
2548  struct kvm_mmu_notifier_range pre_set_range = {
2549  .start = start,
2550  .end = end,
2551  .handler = kvm_pre_set_memory_attributes,
2552  .on_lock = kvm_mmu_invalidate_begin,
2553  .flush_on_ret = true,
2554  .may_block = true,
2555  };
2556  struct kvm_mmu_notifier_range post_set_range = {
2557  .start = start,
2558  .end = end,
2559  .arg.attributes = attributes,
2560  .handler = kvm_arch_post_set_memory_attributes,
2561  .on_lock = kvm_mmu_invalidate_end,
2562  .may_block = true,
2563  };
2564  unsigned long i;
2565  void *entry;
2566  int r = 0;
2567 
2568  entry = attributes ? xa_mk_value(attributes) : NULL;
2569 
2570  mutex_lock(&kvm->slots_lock);
2571 
2572  /* Nothing to do if the entire range as the desired attributes. */
2573  if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2574  goto out_unlock;
2575 
2576  /*
2577  * Reserve memory ahead of time to avoid having to deal with failures
2578  * partway through setting the new attributes.
2579  */
2580  for (i = start; i < end; i++) {
2581  r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2582  if (r)
2583  goto out_unlock;
2584  }
2585 
2586  kvm_handle_gfn_range(kvm, &pre_set_range);
2587 
2588  for (i = start; i < end; i++) {
2589  r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2590  GFP_KERNEL_ACCOUNT));
2591  KVM_BUG_ON(r, kvm);
2592  }
2593 
2594  kvm_handle_gfn_range(kvm, &post_set_range);
2595 
2596 out_unlock:
2597  mutex_unlock(&kvm->slots_lock);
2598 
2599  return r;
2600 }
2601 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2602  struct kvm_memory_attributes *attrs)
2603 {
2604  gfn_t start, end;
2605 
2606  /* flags is currently not used. */
2607  if (attrs->flags)
2608  return -EINVAL;
2609  if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2610  return -EINVAL;
2611  if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2612  return -EINVAL;
2613  if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2614  return -EINVAL;
2615 
2616  start = attrs->address >> PAGE_SHIFT;
2617  end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2618 
2619  /*
2620  * xarray tracks data using "unsigned long", and as a result so does
2621  * KVM. For simplicity, supports generic attributes only on 64-bit
2622  * architectures.
2623  */
2624  BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2625 
2626  return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2627 }
2628 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2629 
2630 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2631 {
2632  return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2633 }
2635 
2636 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2637 {
2638  struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2639  u64 gen = slots->generation;
2640  struct kvm_memory_slot *slot;
2641 
2642  /*
2643  * This also protects against using a memslot from a different address space,
2644  * since different address spaces have different generation numbers.
2645  */
2646  if (unlikely(gen != vcpu->last_used_slot_gen)) {
2647  vcpu->last_used_slot = NULL;
2648  vcpu->last_used_slot_gen = gen;
2649  }
2650 
2651  slot = try_get_memslot(vcpu->last_used_slot, gfn);
2652  if (slot)
2653  return slot;
2654 
2655  /*
2656  * Fall back to searching all memslots. We purposely use
2657  * search_memslots() instead of __gfn_to_memslot() to avoid
2658  * thrashing the VM-wide last_used_slot in kvm_memslots.
2659  */
2660  slot = search_memslots(slots, gfn, false);
2661  if (slot) {
2662  vcpu->last_used_slot = slot;
2663  return slot;
2664  }
2665 
2666  return NULL;
2667 }
2668 
2669 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2670 {
2671  struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2672 
2673  return kvm_is_visible_memslot(memslot);
2674 }
2676 
2677 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2678 {
2679  struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2680 
2681  return kvm_is_visible_memslot(memslot);
2682 }
2684 
2685 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2686 {
2687  struct vm_area_struct *vma;
2688  unsigned long addr, size;
2689 
2690  size = PAGE_SIZE;
2691 
2692  addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2693  if (kvm_is_error_hva(addr))
2694  return PAGE_SIZE;
2695 
2696  mmap_read_lock(current->mm);
2697  vma = find_vma(current->mm, addr);
2698  if (!vma)
2699  goto out;
2700 
2701  size = vma_kernel_pagesize(vma);
2702 
2703 out:
2704  mmap_read_unlock(current->mm);
2705 
2706  return size;
2707 }
2708 
2709 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2710 {
2711  return slot->flags & KVM_MEM_READONLY;
2712 }
2713 
2714 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2715  gfn_t *nr_pages, bool write)
2716 {
2717  if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2718  return KVM_HVA_ERR_BAD;
2719 
2720  if (memslot_is_readonly(slot) && write)
2721  return KVM_HVA_ERR_RO_BAD;
2722 
2723  if (nr_pages)
2724  *nr_pages = slot->npages - (gfn - slot->base_gfn);
2725 
2726  return __gfn_to_hva_memslot(slot, gfn);
2727 }
2728 
2729 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2730  gfn_t *nr_pages)
2731 {
2732  return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2733 }
2734 
2735 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2736  gfn_t gfn)
2737 {
2738  return gfn_to_hva_many(slot, gfn, NULL);
2739 }
2741 
2742 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2743 {
2744  return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2745 }
2747 
2748 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2749 {
2750  return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2751 }
2753 
2754 /*
2755  * Return the hva of a @gfn and the R/W attribute if possible.
2756  *
2757  * @slot: the kvm_memory_slot which contains @gfn
2758  * @gfn: the gfn to be translated
2759  * @writable: used to return the read/write attribute of the @slot if the hva
2760  * is valid and @writable is not NULL
2761  */
2762 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2763  gfn_t gfn, bool *writable)
2764 {
2765  unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2766 
2767  if (!kvm_is_error_hva(hva) && writable)
2768  *writable = !memslot_is_readonly(slot);
2769 
2770  return hva;
2771 }
2772 
2773 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2774 {
2775  struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776 
2777  return gfn_to_hva_memslot_prot(slot, gfn, writable);
2778 }
2779 
2780 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2781 {
2782  struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2783 
2784  return gfn_to_hva_memslot_prot(slot, gfn, writable);
2785 }
2786 
2787 static inline int check_user_page_hwpoison(unsigned long addr)
2788 {
2789  int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2790 
2791  rc = get_user_pages(addr, 1, flags, NULL);
2792  return rc == -EHWPOISON;
2793 }
2794 
2795 /*
2796  * The fast path to get the writable pfn which will be stored in @pfn,
2797  * true indicates success, otherwise false is returned. It's also the
2798  * only part that runs if we can in atomic context.
2799  */
2800 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2801  bool *writable, kvm_pfn_t *pfn)
2802 {
2803  struct page *page[1];
2804 
2805  /*
2806  * Fast pin a writable pfn only if it is a write fault request
2807  * or the caller allows to map a writable pfn for a read fault
2808  * request.
2809  */
2810  if (!(write_fault || writable))
2811  return false;
2812 
2813  if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2814  *pfn = page_to_pfn(page[0]);
2815 
2816  if (writable)
2817  *writable = true;
2818  return true;
2819  }
2820 
2821  return false;
2822 }
2823 
2824 /*
2825  * The slow path to get the pfn of the specified host virtual address,
2826  * 1 indicates success, -errno is returned if error is detected.
2827  */
2828 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2829  bool interruptible, bool *writable, kvm_pfn_t *pfn)
2830 {
2831  /*
2832  * When a VCPU accesses a page that is not mapped into the secondary
2833  * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2834  * make progress. We always want to honor NUMA hinting faults in that
2835  * case, because GUP usage corresponds to memory accesses from the VCPU.
2836  * Otherwise, we'd not trigger NUMA hinting faults once a page is
2837  * mapped into the secondary MMU and gets accessed by a VCPU.
2838  *
2839  * Note that get_user_page_fast_only() and FOLL_WRITE for now
2840  * implicitly honor NUMA hinting faults and don't need this flag.
2841  */
2842  unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2843  struct page *page;
2844  int npages;
2845 
2846  might_sleep();
2847 
2848  if (writable)
2849  *writable = write_fault;
2850 
2851  if (write_fault)
2852  flags |= FOLL_WRITE;
2853  if (async)
2854  flags |= FOLL_NOWAIT;
2855  if (interruptible)
2856  flags |= FOLL_INTERRUPTIBLE;
2857 
2858  npages = get_user_pages_unlocked(addr, 1, &page, flags);
2859  if (npages != 1)
2860  return npages;
2861 
2862  /* map read fault as writable if possible */
2863  if (unlikely(!write_fault) && writable) {
2864  struct page *wpage;
2865 
2866  if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2867  *writable = true;
2868  put_page(page);
2869  page = wpage;
2870  }
2871  }
2872  *pfn = page_to_pfn(page);
2873  return npages;
2874 }
2875 
2876 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2877 {
2878  if (unlikely(!(vma->vm_flags & VM_READ)))
2879  return false;
2880 
2881  if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2882  return false;
2883 
2884  return true;
2885 }
2886 
2887 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2888 {
2889  struct page *page = kvm_pfn_to_refcounted_page(pfn);
2890 
2891  if (!page)
2892  return 1;
2893 
2894  return get_page_unless_zero(page);
2895 }
2896 
2897 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2898  unsigned long addr, bool write_fault,
2899  bool *writable, kvm_pfn_t *p_pfn)
2900 {
2901  kvm_pfn_t pfn;
2902  pte_t *ptep;
2903  pte_t pte;
2904  spinlock_t *ptl;
2905  int r;
2906 
2907  r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2908  if (r) {
2909  /*
2910  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2911  * not call the fault handler, so do it here.
2912  */
2913  bool unlocked = false;
2914  r = fixup_user_fault(current->mm, addr,
2915  (write_fault ? FAULT_FLAG_WRITE : 0),
2916  &unlocked);
2917  if (unlocked)
2918  return -EAGAIN;
2919  if (r)
2920  return r;
2921 
2922  r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2923  if (r)
2924  return r;
2925  }
2926 
2927  pte = ptep_get(ptep);
2928 
2929  if (write_fault && !pte_write(pte)) {
2930  pfn = KVM_PFN_ERR_RO_FAULT;
2931  goto out;
2932  }
2933 
2934  if (writable)
2935  *writable = pte_write(pte);
2936  pfn = pte_pfn(pte);
2937 
2938  /*
2939  * Get a reference here because callers of *hva_to_pfn* and
2940  * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2941  * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2942  * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2943  * simply do nothing for reserved pfns.
2944  *
2945  * Whoever called remap_pfn_range is also going to call e.g.
2946  * unmap_mapping_range before the underlying pages are freed,
2947  * causing a call to our MMU notifier.
2948  *
2949  * Certain IO or PFNMAP mappings can be backed with valid
2950  * struct pages, but be allocated without refcounting e.g.,
2951  * tail pages of non-compound higher order allocations, which
2952  * would then underflow the refcount when the caller does the
2953  * required put_page. Don't allow those pages here.
2954  */
2955  if (!kvm_try_get_pfn(pfn))
2956  r = -EFAULT;
2957 
2958 out:
2959  pte_unmap_unlock(ptep, ptl);
2960  *p_pfn = pfn;
2961 
2962  return r;
2963 }
2964 
2965 /*
2966  * Pin guest page in memory and return its pfn.
2967  * @addr: host virtual address which maps memory to the guest
2968  * @atomic: whether this function can sleep
2969  * @interruptible: whether the process can be interrupted by non-fatal signals
2970  * @async: whether this function need to wait IO complete if the
2971  * host page is not in the memory
2972  * @write_fault: whether we should get a writable host page
2973  * @writable: whether it allows to map a writable host page for !@write_fault
2974  *
2975  * The function will map a writable host page for these two cases:
2976  * 1): @write_fault = true
2977  * 2): @write_fault = false && @writable, @writable will tell the caller
2978  * whether the mapping is writable.
2979  */
2980 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2981  bool *async, bool write_fault, bool *writable)
2982 {
2983  struct vm_area_struct *vma;
2984  kvm_pfn_t pfn;
2985  int npages, r;
2986 
2987  /* we can do it either atomically or asynchronously, not both */
2988  BUG_ON(atomic && async);
2989 
2990  if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2991  return pfn;
2992 
2993  if (atomic)
2994  return KVM_PFN_ERR_FAULT;
2995 
2996  npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2997  writable, &pfn);
2998  if (npages == 1)
2999  return pfn;
3000  if (npages == -EINTR)
3001  return KVM_PFN_ERR_SIGPENDING;
3002 
3003  mmap_read_lock(current->mm);
3004  if (npages == -EHWPOISON ||
3005  (!async && check_user_page_hwpoison(addr))) {
3006  pfn = KVM_PFN_ERR_HWPOISON;
3007  goto exit;
3008  }
3009 
3010 retry:
3011  vma = vma_lookup(current->mm, addr);
3012 
3013  if (vma == NULL)
3014  pfn = KVM_PFN_ERR_FAULT;
3015  else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3016  r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3017  if (r == -EAGAIN)
3018  goto retry;
3019  if (r < 0)
3020  pfn = KVM_PFN_ERR_FAULT;
3021  } else {
3022  if (async && vma_is_valid(vma, write_fault))
3023  *async = true;
3024  pfn = KVM_PFN_ERR_FAULT;
3025  }
3026 exit:
3027  mmap_read_unlock(current->mm);
3028  return pfn;
3029 }
3030 
3031 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3032  bool atomic, bool interruptible, bool *async,
3033  bool write_fault, bool *writable, hva_t *hva)
3034 {
3035  unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3036 
3037  if (hva)
3038  *hva = addr;
3039 
3040  if (addr == KVM_HVA_ERR_RO_BAD) {
3041  if (writable)
3042  *writable = false;
3043  return KVM_PFN_ERR_RO_FAULT;
3044  }
3045 
3046  if (kvm_is_error_hva(addr)) {
3047  if (writable)
3048  *writable = false;
3049  return KVM_PFN_NOSLOT;
3050  }
3051 
3052  /* Do not map writable pfn in the readonly memslot. */
3053  if (writable && memslot_is_readonly(slot)) {
3054  *writable = false;
3055  writable = NULL;
3056  }
3057 
3058  return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3059  writable);
3060 }
3062 
3063 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3064  bool *writable)
3065 {
3066  return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3067  NULL, write_fault, writable, NULL);
3068 }
3070 
3071 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3072 {
3073  return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3074  NULL, NULL);
3075 }
3077 
3078 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3079 {
3080  return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3081  NULL, NULL);
3082 }
3084 
3085 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3086 {
3087  return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3088 }
3090 
3091 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3092 {
3093  return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3094 }
3096 
3097 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3098 {
3099  return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3100 }
3102 
3103 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3104  struct page **pages, int nr_pages)
3105 {
3106  unsigned long addr;
3107  gfn_t entry = 0;
3108 
3109  addr = gfn_to_hva_many(slot, gfn, &entry);
3110  if (kvm_is_error_hva(addr))
3111  return -1;
3112 
3113  if (entry < nr_pages)
3114  return 0;
3115 
3116  return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3117 }
3119 
3120 /*
3121  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3122  * backed by 'struct page'. A valid example is if the backing memslot is
3123  * controlled by KVM. Note, if the returned page is valid, it's refcount has
3124  * been elevated by gfn_to_pfn().
3125  */
3126 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3127 {
3128  struct page *page;
3129  kvm_pfn_t pfn;
3130 
3131  pfn = gfn_to_pfn(kvm, gfn);
3132 
3133  if (is_error_noslot_pfn(pfn))
3134  return KVM_ERR_PTR_BAD_PAGE;
3135 
3136  page = kvm_pfn_to_refcounted_page(pfn);
3137  if (!page)
3138  return KVM_ERR_PTR_BAD_PAGE;
3139 
3140  return page;
3141 }
3143 
3144 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3145 {
3146  if (dirty)
3147  kvm_release_pfn_dirty(pfn);
3148  else
3149  kvm_release_pfn_clean(pfn);
3150 }
3151 
3152 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3153 {
3154  kvm_pfn_t pfn;
3155  void *hva = NULL;
3156  struct page *page = KVM_UNMAPPED_PAGE;
3157 
3158  if (!map)
3159  return -EINVAL;
3160 
3161  pfn = gfn_to_pfn(vcpu->kvm, gfn);
3162  if (is_error_noslot_pfn(pfn))
3163  return -EINVAL;
3164 
3165  if (pfn_valid(pfn)) {
3166  page = pfn_to_page(pfn);
3167  hva = kmap(page);
3168 #ifdef CONFIG_HAS_IOMEM
3169  } else {
3170  hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3171 #endif
3172  }
3173 
3174  if (!hva)
3175  return -EFAULT;
3176 
3177  map->page = page;
3178  map->hva = hva;
3179  map->pfn = pfn;
3180  map->gfn = gfn;
3181 
3182  return 0;
3183 }
3185 
3186 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3187 {
3188  if (!map)
3189  return;
3190 
3191  if (!map->hva)
3192  return;
3193 
3194  if (map->page != KVM_UNMAPPED_PAGE)
3195  kunmap(map->page);
3196 #ifdef CONFIG_HAS_IOMEM
3197  else
3198  memunmap(map->hva);
3199 #endif
3200 
3201  if (dirty)
3202  kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3203 
3204  kvm_release_pfn(map->pfn, dirty);
3205 
3206  map->hva = NULL;
3207  map->page = NULL;
3208 }
3210 
3211 static bool kvm_is_ad_tracked_page(struct page *page)
3212 {
3213  /*
3214  * Per page-flags.h, pages tagged PG_reserved "should in general not be
3215  * touched (e.g. set dirty) except by its owner".
3216  */
3217  return !PageReserved(page);
3218 }
3219 
3220 static void kvm_set_page_dirty(struct page *page)
3221 {
3222  if (kvm_is_ad_tracked_page(page))
3223  SetPageDirty(page);
3224 }
3225 
3226 static void kvm_set_page_accessed(struct page *page)
3227 {
3228  if (kvm_is_ad_tracked_page(page))
3229  mark_page_accessed(page);
3230 }
3231 
3232 void kvm_release_page_clean(struct page *page)
3233 {
3234  WARN_ON(is_error_page(page));
3235 
3236  kvm_set_page_accessed(page);
3237  put_page(page);
3238 }
3240 
3241 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3242 {
3243  struct page *page;
3244 
3245  if (is_error_noslot_pfn(pfn))
3246  return;
3247 
3248  page = kvm_pfn_to_refcounted_page(pfn);
3249  if (!page)
3250  return;
3251 
3252  kvm_release_page_clean(page);
3253 }
3255 
3256 void kvm_release_page_dirty(struct page *page)
3257 {
3258  WARN_ON(is_error_page(page));
3259 
3260  kvm_set_page_dirty(page);
3261  kvm_release_page_clean(page);
3262 }
3264 
3265 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3266 {
3267  struct page *page;
3268 
3269  if (is_error_noslot_pfn(pfn))
3270  return;
3271 
3272  page = kvm_pfn_to_refcounted_page(pfn);
3273  if (!page)
3274  return;
3275 
3276  kvm_release_page_dirty(page);
3277 }
3279 
3280 /*
3281  * Note, checking for an error/noslot pfn is the caller's responsibility when
3282  * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3283  * "set" helpers are not to be used when the pfn might point at garbage.
3284  */
3285 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3286 {
3287  if (WARN_ON(is_error_noslot_pfn(pfn)))
3288  return;
3289 
3290  if (pfn_valid(pfn))
3291  kvm_set_page_dirty(pfn_to_page(pfn));
3292 }
3294 
3295 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3296 {
3297  if (WARN_ON(is_error_noslot_pfn(pfn)))
3298  return;
3299 
3300  if (pfn_valid(pfn))
3301  kvm_set_page_accessed(pfn_to_page(pfn));
3302 }
3304 
3305 static int next_segment(unsigned long len, int offset)
3306 {
3307  if (len > PAGE_SIZE - offset)
3308  return PAGE_SIZE - offset;
3309  else
3310  return len;
3311 }
3312 
3313 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3314  void *data, int offset, int len)
3315 {
3316  int r;
3317  unsigned long addr;
3318 
3319  addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3320  if (kvm_is_error_hva(addr))
3321  return -EFAULT;
3322  r = __copy_from_user(data, (void __user *)addr + offset, len);
3323  if (r)
3324  return -EFAULT;
3325  return 0;
3326 }
3327 
3328 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3329  int len)
3330 {
3331  struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3332 
3333  return __kvm_read_guest_page(slot, gfn, data, offset, len);
3334 }
3336 
3337 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3338  int offset, int len)
3339 {
3340  struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3341 
3342  return __kvm_read_guest_page(slot, gfn, data, offset, len);
3343 }
3345 
3346 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3347 {
3348  gfn_t gfn = gpa >> PAGE_SHIFT;
3349  int seg;
3350  int offset = offset_in_page(gpa);
3351  int ret;
3352 
3353  while ((seg = next_segment(len, offset)) != 0) {
3354  ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3355  if (ret < 0)
3356  return ret;
3357  offset = 0;
3358  len -= seg;
3359  data += seg;
3360  ++gfn;
3361  }
3362  return 0;
3363 }
3365 
3366 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3367 {
3368  gfn_t gfn = gpa >> PAGE_SHIFT;
3369  int seg;
3370  int offset = offset_in_page(gpa);
3371  int ret;
3372 
3373  while ((seg = next_segment(len, offset)) != 0) {
3374  ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3375  if (ret < 0)
3376  return ret;
3377  offset = 0;
3378  len -= seg;
3379  data += seg;
3380  ++gfn;
3381  }
3382  return 0;
3383 }
3385 
3386 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3387  void *data, int offset, unsigned long len)
3388 {
3389  int r;
3390  unsigned long addr;
3391 
3392  addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3393  if (kvm_is_error_hva(addr))
3394  return -EFAULT;
3395  pagefault_disable();
3396  r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3397  pagefault_enable();
3398  if (r)
3399  return -EFAULT;
3400  return 0;
3401 }
3402 
3403 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3404  void *data, unsigned long len)
3405 {
3406  gfn_t gfn = gpa >> PAGE_SHIFT;
3407  struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3408  int offset = offset_in_page(gpa);
3409 
3410  return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3411 }
3413 
3414 static int __kvm_write_guest_page(struct kvm *kvm,
3415  struct kvm_memory_slot *memslot, gfn_t gfn,
3416  const void *data, int offset, int len)
3417 {
3418  int r;
3419  unsigned long addr;
3420 
3421  addr = gfn_to_hva_memslot(memslot, gfn);
3422  if (kvm_is_error_hva(addr))
3423  return -EFAULT;
3424  r = __copy_to_user((void __user *)addr + offset, data, len);
3425  if (r)
3426  return -EFAULT;
3427  mark_page_dirty_in_slot(kvm, memslot, gfn);
3428  return 0;
3429 }
3430 
3431 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3432  const void *data, int offset, int len)
3433 {
3434  struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3435 
3436  return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3437 }
3439 
3440 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3441  const void *data, int offset, int len)
3442 {
3443  struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3444 
3445  return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3446 }
3448 
3449 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3450  unsigned long len)
3451 {
3452  gfn_t gfn = gpa >> PAGE_SHIFT;
3453  int seg;
3454  int offset = offset_in_page(gpa);
3455  int ret;
3456 
3457  while ((seg = next_segment(len, offset)) != 0) {
3458  ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3459  if (ret < 0)
3460  return ret;
3461  offset = 0;
3462  len -= seg;
3463  data += seg;
3464  ++gfn;
3465  }
3466  return 0;
3467 }
3469 
3470 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3471  unsigned long len)
3472 {
3473  gfn_t gfn = gpa >> PAGE_SHIFT;
3474  int seg;
3475  int offset = offset_in_page(gpa);
3476  int ret;
3477 
3478  while ((seg = next_segment(len, offset)) != 0) {
3479  ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3480  if (ret < 0)
3481  return ret;
3482  offset = 0;
3483  len -= seg;
3484  data += seg;
3485  ++gfn;
3486  }
3487  return 0;
3488 }
3490 
3491 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3492  struct gfn_to_hva_cache *ghc,
3493  gpa_t gpa, unsigned long len)
3494 {
3495  int offset = offset_in_page(gpa);
3496  gfn_t start_gfn = gpa >> PAGE_SHIFT;
3497  gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3498  gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3499  gfn_t nr_pages_avail;
3500 
3501  /* Update ghc->generation before performing any error checks. */
3502  ghc->generation = slots->generation;
3503 
3504  if (start_gfn > end_gfn) {
3505  ghc->hva = KVM_HVA_ERR_BAD;
3506  return -EINVAL;
3507  }
3508 
3509  /*
3510  * If the requested region crosses two memslots, we still
3511  * verify that the entire region is valid here.
3512  */
3513  for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3514  ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3515  ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3516  &nr_pages_avail);
3517  if (kvm_is_error_hva(ghc->hva))
3518  return -EFAULT;
3519  }
3520 
3521  /* Use the slow path for cross page reads and writes. */
3522  if (nr_pages_needed == 1)
3523  ghc->hva += offset;
3524  else
3525  ghc->memslot = NULL;
3526 
3527  ghc->gpa = gpa;
3528  ghc->len = len;
3529  return 0;
3530 }
3531 
3532 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3533  gpa_t gpa, unsigned long len)
3534 {
3535  struct kvm_memslots *slots = kvm_memslots(kvm);
3536  return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3537 }
3539 
3540 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3541  void *data, unsigned int offset,
3542  unsigned long len)
3543 {
3544  struct kvm_memslots *slots = kvm_memslots(kvm);
3545  int r;
3546  gpa_t gpa = ghc->gpa + offset;
3547 
3548  if (WARN_ON_ONCE(len + offset > ghc->len))
3549  return -EINVAL;
3550 
3551  if (slots->generation != ghc->generation) {
3552  if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3553  return -EFAULT;
3554  }
3555 
3556  if (kvm_is_error_hva(ghc->hva))
3557  return -EFAULT;
3558 
3559  if (unlikely(!ghc->memslot))
3560  return kvm_write_guest(kvm, gpa, data, len);
3561 
3562  r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3563  if (r)
3564  return -EFAULT;
3565  mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3566 
3567  return 0;
3568 }
3570 
3571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3572  void *data, unsigned long len)
3573 {
3574  return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3575 }
3577 
3578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3579  void *data, unsigned int offset,
3580  unsigned long len)
3581 {
3582  struct kvm_memslots *slots = kvm_memslots(kvm);
3583  int r;
3584  gpa_t gpa = ghc->gpa + offset;
3585 
3586  if (WARN_ON_ONCE(len + offset > ghc->len))
3587  return -EINVAL;
3588 
3589  if (slots->generation != ghc->generation) {
3590  if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3591  return -EFAULT;
3592  }
3593 
3594  if (kvm_is_error_hva(ghc->hva))
3595  return -EFAULT;
3596 
3597  if (unlikely(!ghc->memslot))
3598  return kvm_read_guest(kvm, gpa, data, len);
3599 
3600  r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3601  if (r)
3602  return -EFAULT;
3603 
3604  return 0;
3605 }
3607 
3608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3609  void *data, unsigned long len)
3610 {
3611  return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3612 }
3614 
3615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3616 {
3617  const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3618  gfn_t gfn = gpa >> PAGE_SHIFT;
3619  int seg;
3620  int offset = offset_in_page(gpa);
3621  int ret;
3622 
3623  while ((seg = next_segment(len, offset)) != 0) {
3624  ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3625  if (ret < 0)
3626  return ret;
3627  offset = 0;
3628  len -= seg;
3629  ++gfn;
3630  }
3631  return 0;
3632 }
3634 
3635 void mark_page_dirty_in_slot(struct kvm *kvm,
3636  const struct kvm_memory_slot *memslot,
3637  gfn_t gfn)
3638 {
3639  struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3640 
3641 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3642  if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3643  return;
3644 
3645  WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3646 #endif
3647 
3648  if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3649  unsigned long rel_gfn = gfn - memslot->base_gfn;
3650  u32 slot = (memslot->as_id << 16) | memslot->id;
3651 
3652  if (kvm->dirty_ring_size && vcpu)
3653  kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3654  else if (memslot->dirty_bitmap)
3655  set_bit_le(rel_gfn, memslot->dirty_bitmap);
3656  }
3657 }
3659 
3660 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3661 {
3662  struct kvm_memory_slot *memslot;
3663 
3664  memslot = gfn_to_memslot(kvm, gfn);
3665  mark_page_dirty_in_slot(kvm, memslot, gfn);
3666 }
3668 
3669 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3670 {
3671  struct kvm_memory_slot *memslot;
3672 
3673  memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3674  mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3675 }
3677 
3678 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3679 {
3680  if (!vcpu->sigset_active)
3681  return;
3682 
3683  /*
3684  * This does a lockless modification of ->real_blocked, which is fine
3685  * because, only current can change ->real_blocked and all readers of
3686  * ->real_blocked don't care as long ->real_blocked is always a subset
3687  * of ->blocked.
3688  */
3689  sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3690 }
3691 
3692 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3693 {
3694  if (!vcpu->sigset_active)
3695  return;
3696 
3697  sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3698  sigemptyset(&current->real_blocked);
3699 }
3700 
3701 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3702 {
3703  unsigned int old, val, grow, grow_start;
3704 
3705  old = val = vcpu->halt_poll_ns;
3706  grow_start = READ_ONCE(halt_poll_ns_grow_start);
3707  grow = READ_ONCE(halt_poll_ns_grow);
3708  if (!grow)
3709  goto out;
3710 
3711  val *= grow;
3712  if (val < grow_start)
3713  val = grow_start;
3714 
3715  vcpu->halt_poll_ns = val;
3716 out:
3717  trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3718 }
3719 
3720 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3721 {
3722  unsigned int old, val, shrink, grow_start;
3723 
3724  old = val = vcpu->halt_poll_ns;
3725  shrink = READ_ONCE(halt_poll_ns_shrink);
3726  grow_start = READ_ONCE(halt_poll_ns_grow_start);
3727  if (shrink == 0)
3728  val = 0;
3729  else
3730  val /= shrink;
3731 
3732  if (val < grow_start)
3733  val = 0;
3734 
3735  vcpu->halt_poll_ns = val;
3736  trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3737 }
3738 
3739 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3740 {
3741  int ret = -EINTR;
3742  int idx = srcu_read_lock(&vcpu->kvm->srcu);
3743 
3744  if (kvm_arch_vcpu_runnable(vcpu))
3745  goto out;
3746  if (kvm_cpu_has_pending_timer(vcpu))
3747  goto out;
3748  if (signal_pending(current))
3749  goto out;
3750  if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3751  goto out;
3752 
3753  ret = 0;
3754 out:
3755  srcu_read_unlock(&vcpu->kvm->srcu, idx);
3756  return ret;
3757 }
3758 
3759 /*
3760  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3761  * pending. This is mostly used when halting a vCPU, but may also be used
3762  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3763  */
3764 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3765 {
3766  struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3767  bool waited = false;
3768 
3769  vcpu->stat.generic.blocking = 1;
3770 
3771  preempt_disable();
3772  kvm_arch_vcpu_blocking(vcpu);
3773  prepare_to_rcuwait(wait);
3774  preempt_enable();
3775 
3776  for (;;) {
3777  set_current_state(TASK_INTERRUPTIBLE);
3778 
3779  if (kvm_vcpu_check_block(vcpu) < 0)
3780  break;
3781 
3782  waited = true;
3783  schedule();
3784  }
3785 
3786  preempt_disable();
3787  finish_rcuwait(wait);
3789  preempt_enable();
3790 
3791  vcpu->stat.generic.blocking = 0;
3792 
3793  return waited;
3794 }
3795 
3796 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3797  ktime_t end, bool success)
3798 {
3799  struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3800  u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3801 
3802  ++vcpu->stat.generic.halt_attempted_poll;
3803 
3804  if (success) {
3805  ++vcpu->stat.generic.halt_successful_poll;
3806 
3807  if (!vcpu_valid_wakeup(vcpu))
3808  ++vcpu->stat.generic.halt_poll_invalid;
3809 
3810  stats->halt_poll_success_ns += poll_ns;
3811  KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3812  } else {
3813  stats->halt_poll_fail_ns += poll_ns;
3814  KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3815  }
3816 }
3817 
3818 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3819 {
3820  struct kvm *kvm = vcpu->kvm;
3821 
3822  if (kvm->override_halt_poll_ns) {
3823  /*
3824  * Ensure kvm->max_halt_poll_ns is not read before
3825  * kvm->override_halt_poll_ns.
3826  *
3827  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3828  */
3829  smp_rmb();
3830  return READ_ONCE(kvm->max_halt_poll_ns);
3831  }
3832 
3833  return READ_ONCE(halt_poll_ns);
3834 }
3835 
3836 /*
3837  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3838  * polling is enabled, busy wait for a short time before blocking to avoid the
3839  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3840  * is halted.
3841  */
3842 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3843 {
3844  unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3845  bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3846  ktime_t start, cur, poll_end;
3847  bool waited = false;
3848  bool do_halt_poll;
3849  u64 halt_ns;
3850 
3851  if (vcpu->halt_poll_ns > max_halt_poll_ns)
3852  vcpu->halt_poll_ns = max_halt_poll_ns;
3853 
3854  do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3855 
3856  start = cur = poll_end = ktime_get();
3857  if (do_halt_poll) {
3858  ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3859 
3860  do {
3861  if (kvm_vcpu_check_block(vcpu) < 0)
3862  goto out;
3863  cpu_relax();
3864  poll_end = cur = ktime_get();
3865  } while (kvm_vcpu_can_poll(cur, stop));
3866  }
3867 
3868  waited = kvm_vcpu_block(vcpu);
3869 
3870  cur = ktime_get();
3871  if (waited) {
3872  vcpu->stat.generic.halt_wait_ns +=
3873  ktime_to_ns(cur) - ktime_to_ns(poll_end);
3874  KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3875  ktime_to_ns(cur) - ktime_to_ns(poll_end));
3876  }
3877 out:
3878  /* The total time the vCPU was "halted", including polling time. */
3879  halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3880 
3881  /*
3882  * Note, halt-polling is considered successful so long as the vCPU was
3883  * never actually scheduled out, i.e. even if the wake event arrived
3884  * after of the halt-polling loop itself, but before the full wait.
3885  */
3886  if (do_halt_poll)
3887  update_halt_poll_stats(vcpu, start, poll_end, !waited);
3888 
3889  if (halt_poll_allowed) {
3890  /* Recompute the max halt poll time in case it changed. */
3891  max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3892 
3893  if (!vcpu_valid_wakeup(vcpu)) {
3894  shrink_halt_poll_ns(vcpu);
3895  } else if (max_halt_poll_ns) {
3896  if (halt_ns <= vcpu->halt_poll_ns)
3897  ;
3898  /* we had a long block, shrink polling */
3899  else if (vcpu->halt_poll_ns &&
3900  halt_ns > max_halt_poll_ns)
3901  shrink_halt_poll_ns(vcpu);
3902  /* we had a short halt and our poll time is too small */
3903  else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3904  halt_ns < max_halt_poll_ns)
3905  grow_halt_poll_ns(vcpu);
3906  } else {
3907  vcpu->halt_poll_ns = 0;
3908  }
3909  }
3910 
3911  trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3912 }
3914 
3915 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3916 {
3917  if (__kvm_vcpu_wake_up(vcpu)) {
3918  WRITE_ONCE(vcpu->ready, true);
3919  ++vcpu->stat.generic.halt_wakeup;
3920  return true;
3921  }
3922 
3923  return false;
3924 }
3926 
3927 #ifndef CONFIG_S390
3928 /*
3929  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3930  */
3931 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3932 {
3933  int me, cpu;
3934 
3935  if (kvm_vcpu_wake_up(vcpu))
3936  return;
3937 
3938  me = get_cpu();
3939  /*
3940  * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3941  * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3942  * kick" check does not need atomic operations if kvm_vcpu_kick is used
3943  * within the vCPU thread itself.
3944  */
3945  if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3946  if (vcpu->mode == IN_GUEST_MODE)
3947  WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3948  goto out;
3949  }
3950 
3951  /*
3952  * Note, the vCPU could get migrated to a different pCPU at any point
3953  * after kvm_arch_vcpu_should_kick(), which could result in sending an
3954  * IPI to the previous pCPU. But, that's ok because the purpose of the
3955  * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3956  * vCPU also requires it to leave IN_GUEST_MODE.
3957  */
3958  if (kvm_arch_vcpu_should_kick(vcpu)) {
3959  cpu = READ_ONCE(vcpu->cpu);
3960  if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3961  smp_send_reschedule(cpu);
3962  }
3963 out:
3964  put_cpu();
3965 }
3967 #endif /* !CONFIG_S390 */
3968 
3969 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3970 {
3971  struct pid *pid;
3972  struct task_struct *task = NULL;
3973  int ret = 0;
3974 
3975  rcu_read_lock();
3976  pid = rcu_dereference(target->pid);
3977  if (pid)
3978  task = get_pid_task(pid, PIDTYPE_PID);
3979  rcu_read_unlock();
3980  if (!task)
3981  return ret;
3982  ret = yield_to(task, 1);
3983  put_task_struct(task);
3984 
3985  return ret;
3986 }
3988 
3989 /*
3990  * Helper that checks whether a VCPU is eligible for directed yield.
3991  * Most eligible candidate to yield is decided by following heuristics:
3992  *
3993  * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3994  * (preempted lock holder), indicated by @in_spin_loop.
3995  * Set at the beginning and cleared at the end of interception/PLE handler.
3996  *
3997  * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3998  * chance last time (mostly it has become eligible now since we have probably
3999  * yielded to lockholder in last iteration. This is done by toggling
4000  * @dy_eligible each time a VCPU checked for eligibility.)
4001  *
4002  * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4003  * to preempted lock-holder could result in wrong VCPU selection and CPU
4004  * burning. Giving priority for a potential lock-holder increases lock
4005  * progress.
4006  *
4007  * Since algorithm is based on heuristics, accessing another VCPU data without
4008  * locking does not harm. It may result in trying to yield to same VCPU, fail
4009  * and continue with next VCPU and so on.
4010  */
4011 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4012 {
4013 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4014  bool eligible;
4015 
4016  eligible = !vcpu->spin_loop.in_spin_loop ||
4017  vcpu->spin_loop.dy_eligible;
4018 
4019  if (vcpu->spin_loop.in_spin_loop)
4020  kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4021 
4022  return eligible;
4023 #else
4024  return true;
4025 #endif
4026 }
4027 
4028 /*
4029  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4030  * a vcpu_load/vcpu_put pair. However, for most architectures
4031  * kvm_arch_vcpu_runnable does not require vcpu_load.
4032  */
4033 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4034 {
4035  return kvm_arch_vcpu_runnable(vcpu);
4036 }
4037 
4038 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4039 {
4040  if (kvm_arch_dy_runnable(vcpu))
4041  return true;
4042 
4043 #ifdef CONFIG_KVM_ASYNC_PF
4044  if (!list_empty_careful(&vcpu->async_pf.done))
4045  return true;
4046 #endif
4047 
4048  return false;
4049 }
4050 
4051 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4052 {
4053  return false;
4054 }
4055 
4056 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4057 {
4058  struct kvm *kvm = me->kvm;
4059  struct kvm_vcpu *vcpu;
4060  int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4061  unsigned long i;
4062  int yielded = 0;
4063  int try = 3;
4064  int pass;
4065 
4066  kvm_vcpu_set_in_spin_loop(me, true);
4067  /*
4068  * We boost the priority of a VCPU that is runnable but not
4069  * currently running, because it got preempted by something
4070  * else and called schedule in __vcpu_run. Hopefully that
4071  * VCPU is holding the lock that we need and will release it.
4072  * We approximate round-robin by starting at the last boosted VCPU.
4073  */
4074  for (pass = 0; pass < 2 && !yielded && try; pass++) {
4075  kvm_for_each_vcpu(i, vcpu, kvm) {
4076  if (!pass && i <= last_boosted_vcpu) {
4077  i = last_boosted_vcpu;
4078  continue;
4079  } else if (pass && i > last_boosted_vcpu)
4080  break;
4081  if (!READ_ONCE(vcpu->ready))
4082  continue;
4083  if (vcpu == me)
4084  continue;
4085  if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4086  continue;
4087  if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4089  !kvm_arch_vcpu_in_kernel(vcpu))
4090  continue;
4092  continue;
4093 
4094  yielded = kvm_vcpu_yield_to(vcpu);
4095  if (yielded > 0) {
4096  kvm->last_boosted_vcpu = i;
4097  break;
4098  } else if (yielded < 0) {
4099  try--;
4100  if (!try)
4101  break;
4102  }
4103  }
4104  }
4105  kvm_vcpu_set_in_spin_loop(me, false);
4106 
4107  /* Ensure vcpu is not eligible during next spinloop */
4108  kvm_vcpu_set_dy_eligible(me, false);
4109 }
4111 
4112 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4113 {
4114 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4115  return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4116  (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4117  kvm->dirty_ring_size / PAGE_SIZE);
4118 #else
4119  return false;
4120 #endif
4121 }
4122 
4123 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4124 {
4125  struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4126  struct page *page;
4127 
4128  if (vmf->pgoff == 0)
4129  page = virt_to_page(vcpu->run);
4130 #ifdef CONFIG_X86
4131  else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4132  page = virt_to_page(vcpu->arch.pio_data);
4133 #endif
4134 #ifdef CONFIG_KVM_MMIO
4135  else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4136  page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4137 #endif
4138  else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4139  page = kvm_dirty_ring_get_page(
4140  &vcpu->dirty_ring,
4141  vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4142  else
4143  return kvm_arch_vcpu_fault(vcpu, vmf);
4144  get_page(page);
4145  vmf->page = page;
4146  return 0;
4147 }
4148 
4149 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4150  .fault = kvm_vcpu_fault,
4151 };
4152 
4153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4154 {
4155  struct kvm_vcpu *vcpu = file->private_data;
4156  unsigned long pages = vma_pages(vma);
4157 
4158  if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4159  kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4160  ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4161  return -EINVAL;
4162 
4163  vma->vm_ops = &kvm_vcpu_vm_ops;
4164  return 0;
4165 }
4166 
4167 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4168 {
4169  struct kvm_vcpu *vcpu = filp->private_data;
4170 
4171  kvm_put_kvm(vcpu->kvm);
4172  return 0;
4173 }
4174 
4175 static struct file_operations kvm_vcpu_fops = {
4176  .release = kvm_vcpu_release,
4177  .unlocked_ioctl = kvm_vcpu_ioctl,
4178  .mmap = kvm_vcpu_mmap,
4179  .llseek = noop_llseek,
4180  KVM_COMPAT(kvm_vcpu_compat_ioctl),
4181 };
4182 
4183 /*
4184  * Allocates an inode for the vcpu.
4185  */
4186 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4187 {
4188  char name[8 + 1 + ITOA_MAX_LEN + 1];
4189 
4190  snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4191  return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4192 }
4193 
4194 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4195 static int vcpu_get_pid(void *data, u64 *val)
4196 {
4197  struct kvm_vcpu *vcpu = data;
4198 
4199  rcu_read_lock();
4200  *val = pid_nr(rcu_dereference(vcpu->pid));
4201  rcu_read_unlock();
4202  return 0;
4203 }
4204 
4205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4206 
4207 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4208 {
4209  struct dentry *debugfs_dentry;
4210  char dir_name[ITOA_MAX_LEN * 2];
4211 
4212  if (!debugfs_initialized())
4213  return;
4214 
4215  snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4216  debugfs_dentry = debugfs_create_dir(dir_name,
4217  vcpu->kvm->debugfs_dentry);
4218  debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4219  &vcpu_get_pid_fops);
4220 
4221  kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4222 }
4223 #endif
4224 
4225 /*
4226  * Creates some virtual cpus. Good luck creating more than one.
4227  */
4228 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4229 {
4230  int r;
4231  struct kvm_vcpu *vcpu;
4232  struct page *page;
4233 
4234  if (id >= KVM_MAX_VCPU_IDS)
4235  return -EINVAL;
4236 
4237  mutex_lock(&kvm->lock);
4238  if (kvm->created_vcpus >= kvm->max_vcpus) {
4239  mutex_unlock(&kvm->lock);
4240  return -EINVAL;
4241  }
4242 
4243  r = kvm_arch_vcpu_precreate(kvm, id);
4244  if (r) {
4245  mutex_unlock(&kvm->lock);
4246  return r;
4247  }
4248 
4249  kvm->created_vcpus++;
4250  mutex_unlock(&kvm->lock);
4251 
4252  vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4253  if (!vcpu) {
4254  r = -ENOMEM;
4255  goto vcpu_decrement;
4256  }
4257 
4258  BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4259  page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4260  if (!page) {
4261  r = -ENOMEM;
4262  goto vcpu_free;
4263  }
4264  vcpu->run = page_address(page);
4265 
4266  kvm_vcpu_init(vcpu, kvm, id);
4267 
4268  r = kvm_arch_vcpu_create(vcpu);
4269  if (r)
4270  goto vcpu_free_run_page;
4271 
4272  if (kvm->dirty_ring_size) {
4273  r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4274  id, kvm->dirty_ring_size);
4275  if (r)
4276  goto arch_vcpu_destroy;
4277  }
4278 
4279  mutex_lock(&kvm->lock);
4280 
4281 #ifdef CONFIG_LOCKDEP
4282  /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4283  mutex_lock(&vcpu->mutex);
4284  mutex_unlock(&vcpu->mutex);
4285 #endif
4286 
4287  if (kvm_get_vcpu_by_id(kvm, id)) {
4288  r = -EEXIST;
4289  goto unlock_vcpu_destroy;
4290  }
4291 
4292  vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4293  r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4294  if (r)
4295  goto unlock_vcpu_destroy;
4296 
4297  /* Now it's all set up, let userspace reach it */
4298  kvm_get_kvm(kvm);
4299  r = create_vcpu_fd(vcpu);
4300  if (r < 0)
4301  goto kvm_put_xa_release;
4302 
4303  if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4304  r = -EINVAL;
4305  goto kvm_put_xa_release;
4306  }
4307 
4308  /*
4309  * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4310  * pointer before kvm->online_vcpu's incremented value.
4311  */
4312  smp_wmb();
4313  atomic_inc(&kvm->online_vcpus);
4314 
4315  mutex_unlock(&kvm->lock);
4317  kvm_create_vcpu_debugfs(vcpu);
4318  return r;
4319 
4320 kvm_put_xa_release:
4322  xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4323 unlock_vcpu_destroy:
4324  mutex_unlock(&kvm->lock);
4325  kvm_dirty_ring_free(&vcpu->dirty_ring);
4326 arch_vcpu_destroy:
4327  kvm_arch_vcpu_destroy(vcpu);
4328 vcpu_free_run_page:
4329  free_page((unsigned long)vcpu->run);
4330 vcpu_free:
4331  kmem_cache_free(kvm_vcpu_cache, vcpu);
4332 vcpu_decrement:
4333  mutex_lock(&kvm->lock);
4334  kvm->created_vcpus--;
4335  mutex_unlock(&kvm->lock);
4336  return r;
4337 }
4338 
4339 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4340 {
4341  if (sigset) {
4342  sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4343  vcpu->sigset_active = 1;
4344  vcpu->sigset = *sigset;
4345  } else
4346  vcpu->sigset_active = 0;
4347  return 0;
4348 }
4349 
4350 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4351  size_t size, loff_t *offset)
4352 {
4353  struct kvm_vcpu *vcpu = file->private_data;
4354 
4355  return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4356  &kvm_vcpu_stats_desc[0], &vcpu->stat,
4357  sizeof(vcpu->stat), user_buffer, size, offset);
4358 }
4359 
4360 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4361 {
4362  struct kvm_vcpu *vcpu = file->private_data;
4363 
4364  kvm_put_kvm(vcpu->kvm);
4365  return 0;
4366 }
4367 
4368 static const struct file_operations kvm_vcpu_stats_fops = {
4369  .owner = THIS_MODULE,
4370  .read = kvm_vcpu_stats_read,
4371  .release = kvm_vcpu_stats_release,
4372  .llseek = noop_llseek,
4373 };
4374 
4375 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4376 {
4377  int fd;
4378  struct file *file;
4379  char name[15 + ITOA_MAX_LEN + 1];
4380 
4381  snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4382 
4383  fd = get_unused_fd_flags(O_CLOEXEC);
4384  if (fd < 0)
4385  return fd;
4386 
4387  file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4388  if (IS_ERR(file)) {
4389  put_unused_fd(fd);
4390  return PTR_ERR(file);
4391  }
4392 
4393  kvm_get_kvm(vcpu->kvm);
4394 
4395  file->f_mode |= FMODE_PREAD;
4396  fd_install(fd, file);
4397 
4398  return fd;
4399 }
4400 
4401 static long kvm_vcpu_ioctl(struct file *filp,
4402  unsigned int ioctl, unsigned long arg)
4403 {
4404  struct kvm_vcpu *vcpu = filp->private_data;
4405  void __user *argp = (void __user *)arg;
4406  int r;
4407  struct kvm_fpu *fpu = NULL;
4408  struct kvm_sregs *kvm_sregs = NULL;
4409 
4410  if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4411  return -EIO;
4412 
4413  if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4414  return -EINVAL;
4415 
4416  /*
4417  * Some architectures have vcpu ioctls that are asynchronous to vcpu
4418  * execution; mutex_lock() would break them.
4419  */
4420  r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4421  if (r != -ENOIOCTLCMD)
4422  return r;
4423 
4424  if (mutex_lock_killable(&vcpu->mutex))
4425  return -EINTR;
4426  switch (ioctl) {
4427  case KVM_RUN: {
4428  struct pid *oldpid;
4429  r = -EINVAL;
4430  if (arg)
4431  goto out;
4432  oldpid = rcu_access_pointer(vcpu->pid);
4433  if (unlikely(oldpid != task_pid(current))) {
4434  /* The thread running this VCPU changed. */
4435  struct pid *newpid;
4436 
4437  r = kvm_arch_vcpu_run_pid_change(vcpu);
4438  if (r)
4439  break;
4440 
4441  newpid = get_task_pid(current, PIDTYPE_PID);
4442  rcu_assign_pointer(vcpu->pid, newpid);
4443  if (oldpid)
4444  synchronize_rcu();
4445  put_pid(oldpid);
4446  }
4447  r = kvm_arch_vcpu_ioctl_run(vcpu);
4448  trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4449  break;
4450  }
4451  case KVM_GET_REGS: {
4452  struct kvm_regs *kvm_regs;
4453 
4454  r = -ENOMEM;
4455  kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4456  if (!kvm_regs)
4457  goto out;
4458  r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4459  if (r)
4460  goto out_free1;
4461  r = -EFAULT;
4462  if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4463  goto out_free1;
4464  r = 0;
4465 out_free1:
4466  kfree(kvm_regs);
4467  break;
4468  }
4469  case KVM_SET_REGS: {
4470  struct kvm_regs *kvm_regs;
4471 
4472  kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4473  if (IS_ERR(kvm_regs)) {
4474  r = PTR_ERR(kvm_regs);
4475  goto out;
4476  }
4477  r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4478  kfree(kvm_regs);
4479  break;
4480  }
4481  case KVM_GET_SREGS: {
4482  kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4483  GFP_KERNEL_ACCOUNT);
4484  r = -ENOMEM;
4485  if (!kvm_sregs)
4486  goto out;
4487  r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4488  if (r)
4489  goto out;
4490  r = -EFAULT;
4491  if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4492  goto out;
4493  r = 0;
4494  break;
4495  }
4496  case KVM_SET_SREGS: {
4497  kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4498  if (IS_ERR(kvm_sregs)) {
4499  r = PTR_ERR(kvm_sregs);
4500  kvm_sregs = NULL;
4501  goto out;
4502  }
4503  r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4504  break;
4505  }
4506  case KVM_GET_MP_STATE: {
4507  struct kvm_mp_state mp_state;
4508 
4509  r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4510  if (r)
4511  goto out;
4512  r = -EFAULT;
4513  if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4514  goto out;
4515  r = 0;
4516  break;
4517  }
4518  case KVM_SET_MP_STATE: {
4519  struct kvm_mp_state mp_state;
4520 
4521  r = -EFAULT;
4522  if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4523  goto out;
4524  r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4525  break;
4526  }
4527  case KVM_TRANSLATE: {
4528  struct kvm_translation tr;
4529 
4530  r = -EFAULT;
4531  if (copy_from_user(&tr, argp, sizeof(tr)))
4532  goto out;
4533  r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4534  if (r)
4535  goto out;
4536  r = -EFAULT;
4537  if (copy_to_user(argp, &tr, sizeof(tr)))
4538  goto out;
4539  r = 0;
4540  break;
4541  }
4542  case KVM_SET_GUEST_DEBUG: {
4543  struct kvm_guest_debug dbg;
4544 
4545  r = -EFAULT;
4546  if (copy_from_user(&dbg, argp, sizeof(dbg)))
4547  goto out;
4548  r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4549  break;
4550  }
4551  case KVM_SET_SIGNAL_MASK: {
4552  struct kvm_signal_mask __user *sigmask_arg = argp;
4553  struct kvm_signal_mask kvm_sigmask;
4554  sigset_t sigset, *p;
4555 
4556  p = NULL;
4557  if (argp) {
4558  r = -EFAULT;
4559  if (copy_from_user(&kvm_sigmask, argp,
4560  sizeof(kvm_sigmask)))
4561  goto out;
4562  r = -EINVAL;
4563  if (kvm_sigmask.len != sizeof(sigset))
4564  goto out;
4565  r = -EFAULT;
4566  if (copy_from_user(&sigset, sigmask_arg->sigset,
4567  sizeof(sigset)))
4568  goto out;
4569  p = &sigset;
4570  }
4571  r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4572  break;
4573  }
4574  case KVM_GET_FPU: {
4575  fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4576  r = -ENOMEM;
4577  if (!fpu)
4578  goto out;
4579  r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4580  if (r)
4581  goto out;
4582  r = -EFAULT;
4583  if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4584  goto out;
4585  r = 0;
4586  break;
4587  }
4588  case KVM_SET_FPU: {
4589  fpu = memdup_user(argp, sizeof(*fpu));
4590  if (IS_ERR(fpu)) {
4591  r = PTR_ERR(fpu);
4592  fpu = NULL;
4593  goto out;
4594  }
4595  r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4596  break;
4597  }
4598  case KVM_GET_STATS_FD: {
4599  r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4600  break;
4601  }
4602  default:
4603  r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4604  }
4605 out:
4606  mutex_unlock(&vcpu->mutex);
4607  kfree(fpu);
4608  kfree(kvm_sregs);
4609  return r;
4610 }
4611 
4612 #ifdef CONFIG_KVM_COMPAT
4613 static long kvm_vcpu_compat_ioctl(struct file *filp,
4614  unsigned int ioctl, unsigned long arg)
4615 {
4616  struct kvm_vcpu *vcpu = filp->private_data;
4617  void __user *argp = compat_ptr(arg);
4618  int r;
4619 
4620  if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4621  return -EIO;
4622 
4623  switch (ioctl) {
4624  case KVM_SET_SIGNAL_MASK: {
4625  struct kvm_signal_mask __user *sigmask_arg = argp;
4626  struct kvm_signal_mask kvm_sigmask;
4627  sigset_t sigset;
4628 
4629  if (argp) {
4630  r = -EFAULT;
4631  if (copy_from_user(&kvm_sigmask, argp,
4632  sizeof(kvm_sigmask)))
4633  goto out;
4634  r = -EINVAL;
4635  if (kvm_sigmask.len != sizeof(compat_sigset_t))
4636  goto out;
4637  r = -EFAULT;
4638  if (get_compat_sigset(&sigset,
4639  (compat_sigset_t __user *)sigmask_arg->sigset))
4640  goto out;
4641  r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4642  } else
4643  r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4644  break;
4645  }
4646  default:
4647  r = kvm_vcpu_ioctl(filp, ioctl, arg);
4648  }
4649 
4650 out:
4651  return r;
4652 }
4653 #endif
4654 
4655 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4656 {
4657  struct kvm_device *dev = filp->private_data;
4658 
4659  if (dev->ops->mmap)
4660  return dev->ops->mmap(dev, vma);
4661 
4662  return -ENODEV;
4663 }
4664 
4665 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4666  int (*accessor)(struct kvm_device *dev,
4667  struct kvm_device_attr *attr),
4668  unsigned long arg)
4669 {
4670  struct kvm_device_attr attr;
4671 
4672  if (!accessor)
4673  return -EPERM;
4674 
4675  if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676  return -EFAULT;
4677 
4678  return accessor(dev, &attr);
4679 }
4680 
4681 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4682  unsigned long arg)
4683 {
4684  struct kvm_device *dev = filp->private_data;
4685 
4686  if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4687  return -EIO;
4688 
4689  switch (ioctl) {
4690  case KVM_SET_DEVICE_ATTR:
4691  return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4692  case KVM_GET_DEVICE_ATTR:
4693  return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4694  case KVM_HAS_DEVICE_ATTR:
4695  return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4696  default:
4697  if (dev->ops->ioctl)
4698  return dev->ops->ioctl(dev, ioctl, arg);
4699 
4700  return -ENOTTY;
4701  }
4702 }
4703 
4704 static int kvm_device_release(struct inode *inode, struct file *filp)
4705 {
4706  struct kvm_device *dev = filp->private_data;
4707  struct kvm *kvm = dev->kvm;
4708 
4709  if (dev->ops->release) {
4710  mutex_lock(&kvm->lock);
4711  list_del(&dev->vm_node);
4712  dev->ops->release(dev);
4713  mutex_unlock(&kvm->lock);
4714  }
4715 
4716  kvm_put_kvm(kvm);
4717  return 0;
4718 }
4719 
4720 static struct file_operations kvm_device_fops = {
4721  .unlocked_ioctl = kvm_device_ioctl,
4722  .release = kvm_device_release,
4724  .mmap = kvm_device_mmap,
4725 };
4726 
4727 struct kvm_device *kvm_device_from_filp(struct file *filp)
4728 {
4729  if (filp->f_op != &kvm_device_fops)
4730  return NULL;
4731 
4732  return filp->private_data;
4733 }
4734 
4735 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4736 #ifdef CONFIG_KVM_MPIC
4737  [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4738  [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4739 #endif
4740 };
4741 
4742 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4743 {
4744  if (type >= ARRAY_SIZE(kvm_device_ops_table))
4745  return -ENOSPC;
4746 
4747  if (kvm_device_ops_table[type] != NULL)
4748  return -EEXIST;
4749 
4750  kvm_device_ops_table[type] = ops;
4751  return 0;
4752 }
4753 
4755 {
4756  if (kvm_device_ops_table[type] != NULL)
4757  kvm_device_ops_table[type] = NULL;
4758 }
4759 
4760 static int kvm_ioctl_create_device(struct kvm *kvm,
4761  struct kvm_create_device *cd)
4762 {
4763  const struct kvm_device_ops *ops;
4764  struct kvm_device *dev;
4765  bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4766  int type;
4767  int ret;
4768 
4769  if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4770  return -ENODEV;
4771 
4772  type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4773  ops = kvm_device_ops_table[type];
4774  if (ops == NULL)
4775  return -ENODEV;
4776 
4777  if (test)
4778  return 0;
4779 
4780  dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4781  if (!dev)
4782  return -ENOMEM;
4783 
4784  dev->ops = ops;
4785  dev->kvm = kvm;
4786 
4787  mutex_lock(&kvm->lock);
4788  ret = ops->create(dev, type);
4789  if (ret < 0) {
4790  mutex_unlock(&kvm->lock);
4791  kfree(dev);
4792  return ret;
4793  }
4794  list_add(&dev->vm_node, &kvm->devices);
4795  mutex_unlock(&kvm->lock);
4796 
4797  if (ops->init)
4798  ops->init(dev);
4799 
4800  kvm_get_kvm(kvm);
4801  ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4802  if (ret < 0) {
4804  mutex_lock(&kvm->lock);
4805  list_del(&dev->vm_node);
4806  if (ops->release)
4807  ops->release(dev);
4808  mutex_unlock(&kvm->lock);
4809  if (ops->destroy)
4810  ops->destroy(dev);
4811  return ret;
4812  }
4813 
4814  cd->fd = ret;
4815  return 0;
4816 }
4817 
4818 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4819 {
4820  switch (arg) {
4821  case KVM_CAP_USER_MEMORY:
4822  case KVM_CAP_USER_MEMORY2:
4823  case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4824  case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4825  case KVM_CAP_INTERNAL_ERROR_DATA:
4826 #ifdef CONFIG_HAVE_KVM_MSI
4827  case KVM_CAP_SIGNAL_MSI:
4828 #endif
4829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4830  case KVM_CAP_IRQFD:
4831 #endif
4832  case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4833  case KVM_CAP_CHECK_EXTENSION_VM:
4834  case KVM_CAP_ENABLE_CAP_VM:
4835  case KVM_CAP_HALT_POLL:
4836  return 1;
4837 #ifdef CONFIG_KVM_MMIO
4838  case KVM_CAP_COALESCED_MMIO:
4839  return KVM_COALESCED_MMIO_PAGE_OFFSET;
4840  case KVM_CAP_COALESCED_PIO:
4841  return 1;
4842 #endif
4843 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4844  case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4845  return KVM_DIRTY_LOG_MANUAL_CAPS;
4846 #endif
4847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4848  case KVM_CAP_IRQ_ROUTING:
4849  return KVM_MAX_IRQ_ROUTES;
4850 #endif
4851 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4852  case KVM_CAP_MULTI_ADDRESS_SPACE:
4853  if (kvm)
4854  return kvm_arch_nr_memslot_as_ids(kvm);
4855  return KVM_MAX_NR_ADDRESS_SPACES;
4856 #endif
4857  case KVM_CAP_NR_MEMSLOTS:
4858  return KVM_USER_MEM_SLOTS;
4859  case KVM_CAP_DIRTY_LOG_RING:
4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4861  return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862 #else
4863  return 0;
4864 #endif
4865  case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4866 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4867  return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4868 #else
4869  return 0;
4870 #endif
4871 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4872  case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4873 #endif
4874  case KVM_CAP_BINARY_STATS_FD:
4875  case KVM_CAP_SYSTEM_EVENT_DATA:
4876  case KVM_CAP_DEVICE_CTRL:
4877  return 1;
4878 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4879  case KVM_CAP_MEMORY_ATTRIBUTES:
4880  return kvm_supported_mem_attributes(kvm);
4881 #endif
4882 #ifdef CONFIG_KVM_PRIVATE_MEM
4883  case KVM_CAP_GUEST_MEMFD:
4884  return !kvm || kvm_arch_has_private_mem(kvm);
4885 #endif
4886  default:
4887  break;
4888  }
4889  return kvm_vm_ioctl_check_extension(kvm, arg);
4890 }
4891 
4892 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4893 {
4894  int r;
4895 
4896  if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4897  return -EINVAL;
4898 
4899  /* the size should be power of 2 */
4900  if (!size || (size & (size - 1)))
4901  return -EINVAL;
4902 
4903  /* Should be bigger to keep the reserved entries, or a page */
4905  sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4906  return -EINVAL;
4907 
4908  if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4909  sizeof(struct kvm_dirty_gfn))
4910  return -E2BIG;
4911 
4912  /* We only allow it to set once */
4913  if (kvm->dirty_ring_size)
4914  return -EINVAL;
4915 
4916  mutex_lock(&kvm->lock);
4917 
4918  if (kvm->created_vcpus) {
4919  /* We don't allow to change this value after vcpu created */
4920  r = -EINVAL;
4921  } else {
4922  kvm->dirty_ring_size = size;
4923  r = 0;
4924  }
4925 
4926  mutex_unlock(&kvm->lock);
4927  return r;
4928 }
4929 
4930 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4931 {
4932  unsigned long i;
4933  struct kvm_vcpu *vcpu;
4934  int cleared = 0;
4935 
4936  if (!kvm->dirty_ring_size)
4937  return -EINVAL;
4938 
4939  mutex_lock(&kvm->slots_lock);
4940 
4941  kvm_for_each_vcpu(i, vcpu, kvm)
4942  cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4943 
4944  mutex_unlock(&kvm->slots_lock);
4945 
4946  if (cleared)
4947  kvm_flush_remote_tlbs(kvm);
4948 
4949  return cleared;
4950 }
4951 
4952 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4953  struct kvm_enable_cap *cap)
4954 {
4955  return -EINVAL;
4956 }
4957 
4958 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4959 {
4960  int i;
4961 
4962  lockdep_assert_held(&kvm->slots_lock);
4963 
4964  for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4965  if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4966  return false;
4967  }
4968 
4969  return true;
4970 }
4972 
4973 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4974  struct kvm_enable_cap *cap)
4975 {
4976  switch (cap->cap) {
4977 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4978  case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4979  u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4980 
4981  if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4982  allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4983 
4984  if (cap->flags || (cap->args[0] & ~allowed_options))
4985  return -EINVAL;
4986  kvm->manual_dirty_log_protect = cap->args[0];
4987  return 0;
4988  }
4989 #endif
4990  case KVM_CAP_HALT_POLL: {
4991  if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4992  return -EINVAL;
4993 
4994  kvm->max_halt_poll_ns = cap->args[0];
4995 
4996  /*
4997  * Ensure kvm->override_halt_poll_ns does not become visible
4998  * before kvm->max_halt_poll_ns.
4999  *
5000  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5001  */
5002  smp_wmb();
5003  kvm->override_halt_poll_ns = true;
5004 
5005  return 0;
5006  }
5007  case KVM_CAP_DIRTY_LOG_RING:
5008  case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5009  if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5010  return -EINVAL;
5011 
5012  return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5013  case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5014  int r = -EINVAL;
5015 
5016  if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5017  !kvm->dirty_ring_size || cap->flags)
5018  return r;
5019 
5020  mutex_lock(&kvm->slots_lock);
5021 
5022  /*
5023  * For simplicity, allow enabling ring+bitmap if and only if
5024  * there are no memslots, e.g. to ensure all memslots allocate
5025  * a bitmap after the capability is enabled.
5026  */
5027  if (kvm_are_all_memslots_empty(kvm)) {
5028  kvm->dirty_ring_with_bitmap = true;
5029  r = 0;
5030  }
5031 
5032  mutex_unlock(&kvm->slots_lock);
5033 
5034  return r;
5035  }
5036  default:
5037  return kvm_vm_ioctl_enable_cap(kvm, cap);
5038  }
5039 }
5040 
5041 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5042  size_t size, loff_t *offset)
5043 {
5044  struct kvm *kvm = file->private_data;
5045 
5046  return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5047  &kvm_vm_stats_desc[0], &kvm->stat,
5048  sizeof(kvm->stat), user_buffer, size, offset);
5049 }
5050 
5051 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5052 {
5053  struct kvm *kvm = file->private_data;
5054 
5055  kvm_put_kvm(kvm);
5056  return 0;
5057 }
5058 
5059 static const struct file_operations kvm_vm_stats_fops = {
5060  .owner = THIS_MODULE,
5061  .read = kvm_vm_stats_read,
5062  .release = kvm_vm_stats_release,
5063  .llseek = noop_llseek,
5064 };
5065 
5066 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5067 {
5068  int fd;
5069  struct file *file;
5070 
5071  fd = get_unused_fd_flags(O_CLOEXEC);
5072  if (fd < 0)
5073  return fd;
5074 
5075  file = anon_inode_getfile("kvm-vm-stats",
5076  &kvm_vm_stats_fops, kvm, O_RDONLY);
5077  if (IS_ERR(file)) {
5078  put_unused_fd(fd);
5079  return PTR_ERR(file);
5080  }
5081 
5082  kvm_get_kvm(kvm);
5083 
5084  file->f_mode |= FMODE_PREAD;
5085  fd_install(fd, file);
5086 
5087  return fd;
5088 }
5089 
5090 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5091 do { \
5092  BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5093  offsetof(struct kvm_userspace_memory_region2, field)); \
5094  BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5095  sizeof_field(struct kvm_userspace_memory_region2, field)); \
5096 } while (0)
5097 
5098 static long kvm_vm_ioctl(struct file *filp,
5099  unsigned int ioctl, unsigned long arg)
5100 {
5101  struct kvm *kvm = filp->private_data;
5102  void __user *argp = (void __user *)arg;
5103  int r;
5104 
5105  if (kvm->mm != current->mm || kvm->vm_dead)
5106  return -EIO;
5107  switch (ioctl) {
5108  case KVM_CREATE_VCPU:
5109  r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5110  break;
5111  case KVM_ENABLE_CAP: {
5112  struct kvm_enable_cap cap;
5113 
5114  r = -EFAULT;
5115  if (copy_from_user(&cap, argp, sizeof(cap)))
5116  goto out;
5117  r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5118  break;
5119  }
5120  case KVM_SET_USER_MEMORY_REGION2:
5121  case KVM_SET_USER_MEMORY_REGION: {
5122  struct kvm_userspace_memory_region2 mem;
5123  unsigned long size;
5124 
5125  if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5126  /*
5127  * Fields beyond struct kvm_userspace_memory_region shouldn't be
5128  * accessed, but avoid leaking kernel memory in case of a bug.
5129  */
5130  memset(&mem, 0, sizeof(mem));
5131  size = sizeof(struct kvm_userspace_memory_region);
5132  } else {
5133  size = sizeof(struct kvm_userspace_memory_region2);
5134  }
5135 
5136  /* Ensure the common parts of the two structs are identical. */
5139  SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5140  SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5141  SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5142 
5143  r = -EFAULT;
5144  if (copy_from_user(&mem, argp, size))
5145  goto out;
5146 
5147  r = -EINVAL;
5148  if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5149  (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5150  goto out;
5151 
5152  r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5153  break;
5154  }
5155  case KVM_GET_DIRTY_LOG: {
5156  struct kvm_dirty_log log;
5157 
5158  r = -EFAULT;
5159  if (copy_from_user(&log, argp, sizeof(log)))
5160  goto out;
5161  r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5162  break;
5163  }
5164 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5165  case KVM_CLEAR_DIRTY_LOG: {
5166  struct kvm_clear_dirty_log log;
5167 
5168  r = -EFAULT;
5169  if (copy_from_user(&log, argp, sizeof(log)))
5170  goto out;
5171  r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5172  break;
5173  }
5174 #endif
5175 #ifdef CONFIG_KVM_MMIO
5176  case KVM_REGISTER_COALESCED_MMIO: {
5177  struct kvm_coalesced_mmio_zone zone;
5178 
5179  r = -EFAULT;
5180  if (copy_from_user(&zone, argp, sizeof(zone)))
5181  goto out;
5182  r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5183  break;
5184  }
5185  case KVM_UNREGISTER_COALESCED_MMIO: {
5186  struct kvm_coalesced_mmio_zone zone;
5187 
5188  r = -EFAULT;
5189  if (copy_from_user(&zone, argp, sizeof(zone)))
5190  goto out;
5192  break;
5193  }
5194 #endif
5195  case KVM_IRQFD: {
5196  struct kvm_irqfd data;
5197 
5198  r = -EFAULT;
5199  if (copy_from_user(&data, argp, sizeof(data)))
5200  goto out;
5201  r = kvm_irqfd(kvm, &data);
5202  break;
5203  }
5204  case KVM_IOEVENTFD: {
5205  struct kvm_ioeventfd data;
5206 
5207  r = -EFAULT;
5208  if (copy_from_user(&data, argp, sizeof(data)))
5209  goto out;
5210  r = kvm_ioeventfd(kvm, &data);
5211  break;
5212  }
5213 #ifdef CONFIG_HAVE_KVM_MSI
5214  case KVM_SIGNAL_MSI: {
5215  struct kvm_msi msi;
5216 
5217  r = -EFAULT;
5218  if (copy_from_user(&msi, argp, sizeof(msi)))
5219  goto out;
5220  r = kvm_send_userspace_msi(kvm, &msi);
5221  break;
5222  }
5223 #endif
5224 #ifdef __KVM_HAVE_IRQ_LINE
5225  case KVM_IRQ_LINE_STATUS:
5226  case KVM_IRQ_LINE: {
5227  struct kvm_irq_level irq_event;
5228 
5229  r = -EFAULT;
5230  if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5231  goto out;
5232 
5233  r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5234  ioctl == KVM_IRQ_LINE_STATUS);
5235  if (r)
5236  goto out;
5237 
5238  r = -EFAULT;
5239  if (ioctl == KVM_IRQ_LINE_STATUS) {
5240  if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5241  goto out;
5242  }
5243 
5244  r = 0;
5245  break;
5246  }
5247 #endif
5248 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5249  case KVM_SET_GSI_ROUTING: {
5250  struct kvm_irq_routing routing;
5251  struct kvm_irq_routing __user *urouting;
5252  struct kvm_irq_routing_entry *entries = NULL;
5253 
5254  r = -EFAULT;
5255  if (copy_from_user(&routing, argp, sizeof(routing)))
5256  goto out;
5257  r = -EINVAL;
5258  if (!kvm_arch_can_set_irq_routing(kvm))
5259  goto out;
5260  if (routing.nr > KVM_MAX_IRQ_ROUTES)
5261  goto out;
5262  if (routing.flags)
5263  goto out;
5264  if (routing.nr) {
5265  urouting = argp;
5266  entries = vmemdup_array_user(urouting->entries,
5267  routing.nr, sizeof(*entries));
5268  if (IS_ERR(entries)) {
5269  r = PTR_ERR(entries);
5270  goto out;
5271  }
5272  }
5273  r = kvm_set_irq_routing(kvm, entries, routing.nr,
5274  routing.flags);
5275  kvfree(entries);
5276  break;
5277  }
5278 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5279 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5280  case KVM_SET_MEMORY_ATTRIBUTES: {
5281  struct kvm_memory_attributes attrs;
5282 
5283  r = -EFAULT;
5284  if (copy_from_user(&attrs, argp, sizeof(attrs)))
5285  goto out;
5286 
5287  r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5288  break;
5289  }
5290 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5291  case KVM_CREATE_DEVICE: {
5292  struct kvm_create_device cd;
5293 
5294  r = -EFAULT;
5295  if (copy_from_user(&cd, argp, sizeof(cd)))
5296  goto out;
5297 
5298  r = kvm_ioctl_create_device(kvm, &cd);
5299  if (r)
5300  goto out;
5301 
5302  r = -EFAULT;
5303  if (copy_to_user(argp, &cd, sizeof(cd)))
5304  goto out;
5305 
5306  r = 0;
5307  break;
5308  }
5309  case KVM_CHECK_EXTENSION:
5311  break;
5312  case KVM_RESET_DIRTY_RINGS:
5314  break;
5315  case KVM_GET_STATS_FD:
5316  r = kvm_vm_ioctl_get_stats_fd(kvm);
5317  break;
5318 #ifdef CONFIG_KVM_PRIVATE_MEM
5319  case KVM_CREATE_GUEST_MEMFD: {
5320  struct kvm_create_guest_memfd guest_memfd;
5321 
5322  r = -EFAULT;
5323  if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5324  goto out;
5325 
5326  r = kvm_gmem_create(kvm, &guest_memfd);
5327  break;
5328  }
5329 #endif
5330  default:
5331  r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5332  }
5333 out:
5334  return r;
5335 }
5336 
5337 #ifdef CONFIG_KVM_COMPAT
5338 struct compat_kvm_dirty_log {
5339  __u32 slot;
5340  __u32 padding1;
5341  union {
5342  compat_uptr_t dirty_bitmap; /* one bit per page */
5343  __u64 padding2;
5344  };
5345 };
5346 
5347 struct compat_kvm_clear_dirty_log {
5348  __u32 slot;
5349  __u32 num_pages;
5350  __u64 first_page;
5351  union {
5352  compat_uptr_t dirty_bitmap; /* one bit per page */
5353  __u64 padding2;
5354  };
5355 };
5356 
5357 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5358  unsigned long arg)
5359 {
5360  return -ENOTTY;
5361 }
5362 
5363 static long kvm_vm_compat_ioctl(struct file *filp,
5364  unsigned int ioctl, unsigned long arg)
5365 {
5366  struct kvm *kvm = filp->private_data;
5367  int r;
5368 
5369  if (kvm->mm != current->mm || kvm->vm_dead)
5370  return -EIO;
5371 
5372  r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5373  if (r != -ENOTTY)
5374  return r;
5375 
5376  switch (ioctl) {
5377 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5378  case KVM_CLEAR_DIRTY_LOG: {
5379  struct compat_kvm_clear_dirty_log compat_log;
5380  struct kvm_clear_dirty_log log;
5381 
5382  if (copy_from_user(&compat_log, (void __user *)arg,
5383  sizeof(compat_log)))
5384  return -EFAULT;
5385  log.slot = compat_log.slot;
5386  log.num_pages = compat_log.num_pages;
5387  log.first_page = compat_log.first_page;
5388  log.padding2 = compat_log.padding2;
5389  log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5390 
5391  r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5392  break;
5393  }
5394 #endif
5395  case KVM_GET_DIRTY_LOG: {
5396  struct compat_kvm_dirty_log compat_log;
5397  struct kvm_dirty_log log;
5398 
5399  if (copy_from_user(&compat_log, (void __user *)arg,
5400  sizeof(compat_log)))
5401  return -EFAULT;
5402  log.slot = compat_log.slot;
5403  log.padding1 = compat_log.padding1;
5404  log.padding2 = compat_log.padding2;
5405  log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406 
5407  r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5408  break;
5409  }
5410  default:
5411  r = kvm_vm_ioctl(filp, ioctl, arg);
5412  }
5413  return r;
5414 }
5415 #endif
5416 
5417 static struct file_operations kvm_vm_fops = {
5418  .release = kvm_vm_release,
5419  .unlocked_ioctl = kvm_vm_ioctl,
5420  .llseek = noop_llseek,
5421  KVM_COMPAT(kvm_vm_compat_ioctl),
5422 };
5423 
5424 bool file_is_kvm(struct file *file)
5425 {
5426  return file && file->f_op == &kvm_vm_fops;
5427 }
5429 
5430 static int kvm_dev_ioctl_create_vm(unsigned long type)
5431 {
5432  char fdname[ITOA_MAX_LEN + 1];
5433  int r, fd;
5434  struct kvm *kvm;
5435  struct file *file;
5436 
5437  fd = get_unused_fd_flags(O_CLOEXEC);
5438  if (fd < 0)
5439  return fd;
5440 
5441  snprintf(fdname, sizeof(fdname), "%d", fd);
5442 
5443  kvm = kvm_create_vm(type, fdname);
5444  if (IS_ERR(kvm)) {
5445  r = PTR_ERR(kvm);
5446  goto put_fd;
5447  }
5448 
5449  file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5450  if (IS_ERR(file)) {
5451  r = PTR_ERR(file);
5452  goto put_kvm;
5453  }
5454 
5455  /*
5456  * Don't call kvm_put_kvm anymore at this point; file->f_op is
5457  * already set, with ->release() being kvm_vm_release(). In error
5458  * cases it will be called by the final fput(file) and will take
5459  * care of doing kvm_put_kvm(kvm).
5460  */
5462 
5463  fd_install(fd, file);
5464  return fd;
5465 
5466 put_kvm:
5467  kvm_put_kvm(kvm);
5468 put_fd:
5469  put_unused_fd(fd);
5470  return r;
5471 }
5472 
5473 static long kvm_dev_ioctl(struct file *filp,
5474  unsigned int ioctl, unsigned long arg)
5475 {
5476  int r = -EINVAL;
5477 
5478  switch (ioctl) {
5479  case KVM_GET_API_VERSION:
5480  if (arg)
5481  goto out;
5482  r = KVM_API_VERSION;
5483  break;
5484  case KVM_CREATE_VM:
5485  r = kvm_dev_ioctl_create_vm(arg);
5486  break;
5487  case KVM_CHECK_EXTENSION:
5488  r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5489  break;
5490  case KVM_GET_VCPU_MMAP_SIZE:
5491  if (arg)
5492  goto out;
5493  r = PAGE_SIZE; /* struct kvm_run */
5494 #ifdef CONFIG_X86
5495  r += PAGE_SIZE; /* pio data page */
5496 #endif
5497 #ifdef CONFIG_KVM_MMIO
5498  r += PAGE_SIZE; /* coalesced mmio ring page */
5499 #endif
5500  break;
5501  default:
5502  return kvm_arch_dev_ioctl(filp, ioctl, arg);
5503  }
5504 out:
5505  return r;
5506 }
5507 
5508 static struct file_operations kvm_chardev_ops = {
5509  .unlocked_ioctl = kvm_dev_ioctl,
5510  .llseek = noop_llseek,
5512 };
5513 
5514 static struct miscdevice kvm_dev = {
5515  KVM_MINOR,
5516  "kvm",
5517  &kvm_chardev_ops,
5518 };
5519 
5520 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5521 __visible bool kvm_rebooting;
5522 EXPORT_SYMBOL_GPL(kvm_rebooting);
5523 
5524 static DEFINE_PER_CPU(bool, hardware_enabled);
5525 static int kvm_usage_count;
5526 
5527 static int __hardware_enable_nolock(void)
5528 {
5529  if (__this_cpu_read(hardware_enabled))
5530  return 0;
5531 
5532  if (kvm_arch_hardware_enable()) {
5533  pr_info("kvm: enabling virtualization on CPU%d failed\n",
5534  raw_smp_processor_id());
5535  return -EIO;
5536  }
5537 
5538  __this_cpu_write(hardware_enabled, true);
5539  return 0;
5540 }
5541 
5542 static void hardware_enable_nolock(void *failed)
5543 {
5544  if (__hardware_enable_nolock())
5545  atomic_inc(failed);
5546 }
5547 
5548 static int kvm_online_cpu(unsigned int cpu)
5549 {
5550  int ret = 0;
5551 
5552  /*
5553  * Abort the CPU online process if hardware virtualization cannot
5554  * be enabled. Otherwise running VMs would encounter unrecoverable
5555  * errors when scheduled to this CPU.
5556  */
5557  mutex_lock(&kvm_lock);
5558  if (kvm_usage_count)
5559  ret = __hardware_enable_nolock();
5560  mutex_unlock(&kvm_lock);
5561  return ret;
5562 }
5563 
5564 static void hardware_disable_nolock(void *junk)
5565 {
5566  /*
5567  * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5568  * hardware, not just CPUs that successfully enabled hardware!
5569  */
5570  if (!__this_cpu_read(hardware_enabled))
5571  return;
5572 
5574 
5575  __this_cpu_write(hardware_enabled, false);
5576 }
5577 
5578 static int kvm_offline_cpu(unsigned int cpu)
5579 {
5580  mutex_lock(&kvm_lock);
5581  if (kvm_usage_count)
5582  hardware_disable_nolock(NULL);
5583  mutex_unlock(&kvm_lock);
5584  return 0;
5585 }
5586 
5587 static void hardware_disable_all_nolock(void)
5588 {
5589  BUG_ON(!kvm_usage_count);
5590 
5591  kvm_usage_count--;
5592  if (!kvm_usage_count)
5593  on_each_cpu(hardware_disable_nolock, NULL, 1);
5594 }
5595 
5596 static void hardware_disable_all(void)
5597 {
5598  cpus_read_lock();
5599  mutex_lock(&kvm_lock);
5600  hardware_disable_all_nolock();
5601  mutex_unlock(&kvm_lock);
5602  cpus_read_unlock();
5603 }
5604 
5605 static int hardware_enable_all(void)
5606 {
5607  atomic_t failed = ATOMIC_INIT(0);
5608  int r;
5609 
5610  /*
5611  * Do not enable hardware virtualization if the system is going down.
5612  * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5613  * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5614  * after kvm_reboot() is called. Note, this relies on system_state
5615  * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5616  * hook instead of registering a dedicated reboot notifier (the latter
5617  * runs before system_state is updated).
5618  */
5619  if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5620  system_state == SYSTEM_RESTART)
5621  return -EBUSY;
5622 
5623  /*
5624  * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5625  * is called, and so on_each_cpu() between them includes the CPU that
5626  * is being onlined. As a result, hardware_enable_nolock() may get
5627  * invoked before kvm_online_cpu(), which also enables hardware if the
5628  * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5629  * enable hardware multiple times.
5630  */
5631  cpus_read_lock();
5632  mutex_lock(&kvm_lock);
5633 
5634  r = 0;
5635 
5636  kvm_usage_count++;
5637  if (kvm_usage_count == 1) {
5638  on_each_cpu(hardware_enable_nolock, &failed, 1);
5639 
5640  if (atomic_read(&failed)) {
5641  hardware_disable_all_nolock();
5642  r = -EBUSY;
5643  }
5644  }
5645 
5646  mutex_unlock(&kvm_lock);
5647  cpus_read_unlock();
5648 
5649  return r;
5650 }
5651 
5652 static void kvm_shutdown(void)
5653 {
5654  /*
5655  * Disable hardware virtualization and set kvm_rebooting to indicate
5656  * that KVM has asynchronously disabled hardware virtualization, i.e.
5657  * that relevant errors and exceptions aren't entirely unexpected.
5658  * Some flavors of hardware virtualization need to be disabled before
5659  * transferring control to firmware (to perform shutdown/reboot), e.g.
5660  * on x86, virtualization can block INIT interrupts, which are used by
5661  * firmware to pull APs back under firmware control. Note, this path
5662  * is used for both shutdown and reboot scenarios, i.e. neither name is
5663  * 100% comprehensive.
5664  */
5665  pr_info("kvm: exiting hardware virtualization\n");
5666  kvm_rebooting = true;
5667  on_each_cpu(hardware_disable_nolock, NULL, 1);
5668 }
5669 
5670 static int kvm_suspend(void)
5671 {
5672  /*
5673  * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5674  * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5675  * is stable. Assert that kvm_lock is not held to ensure the system
5676  * isn't suspended while KVM is enabling hardware. Hardware enabling
5677  * can be preempted, but the task cannot be frozen until it has dropped
5678  * all locks (userspace tasks are frozen via a fake signal).
5679  */
5680  lockdep_assert_not_held(&kvm_lock);
5681  lockdep_assert_irqs_disabled();
5682 
5683  if (kvm_usage_count)
5684  hardware_disable_nolock(NULL);
5685  return 0;
5686 }
5687 
5688 static void kvm_resume(void)
5689 {
5690  lockdep_assert_not_held(&kvm_lock);
5691  lockdep_assert_irqs_disabled();
5692 
5693  if (kvm_usage_count)
5694  WARN_ON_ONCE(__hardware_enable_nolock());
5695 }
5696 
5697 static struct syscore_ops kvm_syscore_ops = {
5698  .suspend = kvm_suspend,
5699  .resume = kvm_resume,
5700  .shutdown = kvm_shutdown,
5701 };
5702 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5703 static int hardware_enable_all(void)
5704 {
5705  return 0;
5706 }
5707 
5708 static void hardware_disable_all(void)
5709 {
5710 
5711 }
5712 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5713 
5714 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5715 {
5716  if (dev->ops->destructor)
5717  dev->ops->destructor(dev);
5718 }
5719 
5720 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5721 {
5722  int i;
5723 
5724  for (i = 0; i < bus->dev_count; i++) {
5725  struct kvm_io_device *pos = bus->range[i].dev;
5726 
5728  }
5729  kfree(bus);
5730 }
5731 
5732 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5733  const struct kvm_io_range *r2)
5734 {
5735  gpa_t addr1 = r1->addr;
5736  gpa_t addr2 = r2->addr;
5737 
5738  if (addr1 < addr2)
5739  return -1;
5740 
5741  /* If r2->len == 0, match the exact address. If r2->len != 0,
5742  * accept any overlapping write. Any order is acceptable for
5743  * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5744  * we process all of them.
5745  */
5746  if (r2->len) {
5747  addr1 += r1->len;
5748  addr2 += r2->len;
5749  }
5750 
5751  if (addr1 > addr2)
5752  return 1;
5753 
5754  return 0;
5755 }
5756 
5757 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5758 {
5759  return kvm_io_bus_cmp(p1, p2);
5760 }
5761 
5762 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5763  gpa_t addr, int len)
5764 {
5765  struct kvm_io_range *range, key;
5766  int off;
5767 
5768  key = (struct kvm_io_range) {
5769  .addr = addr,
5770  .len = len,
5771  };
5772 
5773  range = bsearch(&key, bus->range, bus->dev_count,
5774  sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5775  if (range == NULL)
5776  return -ENOENT;
5777 
5778  off = range - bus->range;
5779 
5780  while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5781  off--;
5782 
5783  return off;
5784 }
5785 
5786 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5787  struct kvm_io_range *range, const void *val)
5788 {
5789  int idx;
5790 
5791  idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5792  if (idx < 0)
5793  return -EOPNOTSUPP;
5794 
5795  while (idx < bus->dev_count &&
5796  kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5797  if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5798  range->len, val))
5799  return idx;
5800  idx++;
5801  }
5802 
5803  return -EOPNOTSUPP;
5804 }
5805 
5806 /* kvm_io_bus_write - called under kvm->slots_lock */
5807 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5808  int len, const void *val)
5809 {
5810  struct kvm_io_bus *bus;
5811  struct kvm_io_range range;
5812  int r;
5813 
5814  range = (struct kvm_io_range) {
5815  .addr = addr,
5816  .len = len,
5817  };
5818 
5819  bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5820  if (!bus)
5821  return -ENOMEM;
5822  r = __kvm_io_bus_write(vcpu, bus, &range, val);
5823  return r < 0 ? r : 0;
5824 }
5826 
5827 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5828 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5829  gpa_t addr, int len, const void *val, long cookie)
5830 {
5831  struct kvm_io_bus *bus;
5832  struct kvm_io_range range;
5833 
5834  range = (struct kvm_io_range) {
5835  .addr = addr,
5836  .len = len,
5837  };
5838 
5839  bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5840  if (!bus)
5841  return -ENOMEM;
5842 
5843  /* First try the device referenced by cookie. */
5844  if ((cookie >= 0) && (cookie < bus->dev_count) &&
5845  (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5846  if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5847  val))
5848  return cookie;
5849 
5850  /*
5851  * cookie contained garbage; fall back to search and return the
5852  * correct cookie value.
5853  */
5854  return __kvm_io_bus_write(vcpu, bus, &range, val);
5855 }
5856 
5857 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5858  struct kvm_io_range *range, void *val)
5859 {
5860  int idx;
5861 
5862  idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5863  if (idx < 0)
5864  return -EOPNOTSUPP;
5865 
5866  while (idx < bus->dev_count &&
5867  kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5868  if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5869  range->len, val))
5870  return idx;
5871  idx++;
5872  }
5873 
5874  return -EOPNOTSUPP;
5875 }
5876 
5877 /* kvm_io_bus_read - called under kvm->slots_lock */
5878 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5879  int len, void *val)
5880 {
5881  struct kvm_io_bus *bus;
5882  struct kvm_io_range range;
5883  int r;
5884 
5885  range = (struct kvm_io_range) {
5886  .addr = addr,
5887  .len = len,
5888  };
5889 
5890  bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5891  if (!bus)
5892  return -ENOMEM;
5893  r = __kvm_io_bus_read(vcpu, bus, &range, val);
5894  return r < 0 ? r : 0;
5895 }
5896 
5897 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5898  int len, struct kvm_io_device *dev)
5899 {
5900  int i;
5901  struct kvm_io_bus *new_bus, *bus;
5902  struct kvm_io_range range;
5903 
5904  lockdep_assert_held(&kvm->slots_lock);
5905 
5906  bus = kvm_get_bus(kvm, bus_idx);
5907  if (!bus)
5908  return -ENOMEM;
5909 
5910  /* exclude ioeventfd which is limited by maximum fd */
5911  if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5912  return -ENOSPC;
5913 
5914  new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5915  GFP_KERNEL_ACCOUNT);
5916  if (!new_bus)
5917  return -ENOMEM;
5918 
5919  range = (struct kvm_io_range) {
5920  .addr = addr,
5921  .len = len,
5922  .dev = dev,
5923  };
5924 
5925  for (i = 0; i < bus->dev_count; i++)
5926  if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5927  break;
5928 
5929  memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5930  new_bus->dev_count++;
5931  new_bus->range[i] = range;
5932  memcpy(new_bus->range + i + 1, bus->range + i,
5933  (bus->dev_count - i) * sizeof(struct kvm_io_range));
5934  rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5935  synchronize_srcu_expedited(&kvm->srcu);
5936  kfree(bus);
5937 
5938  return 0;
5939 }
5940 
5941 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5942  struct kvm_io_device *dev)
5943 {
5944  int i;
5945  struct kvm_io_bus *new_bus, *bus;
5946 
5947  lockdep_assert_held(&kvm->slots_lock);
5948 
5949  bus = kvm_get_bus(kvm, bus_idx);
5950  if (!bus)
5951  return 0;
5952 
5953  for (i = 0; i < bus->dev_count; i++) {
5954  if (bus->range[i].dev == dev) {
5955  break;
5956  }
5957  }
5958 
5959  if (i == bus->dev_count)
5960  return 0;
5961 
5962  new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5963  GFP_KERNEL_ACCOUNT);
5964  if (new_bus) {
5965  memcpy(new_bus, bus, struct_size(bus, range, i));
5966  new_bus->dev_count--;
5967  memcpy(new_bus->range + i, bus->range + i + 1,
5968  flex_array_size(new_bus, range, new_bus->dev_count - i));
5969  }
5970 
5971  rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5972  synchronize_srcu_expedited(&kvm->srcu);
5973 
5974  /*
5975  * If NULL bus is installed, destroy the old bus, including all the
5976  * attached devices. Otherwise, destroy the caller's device only.
5977  */
5978  if (!new_bus) {
5979  pr_err("kvm: failed to shrink bus, removing it completely\n");
5980  kvm_io_bus_destroy(bus);
5981  return -ENOMEM;
5982  }
5983 
5985  kfree(bus);
5986  return 0;
5987 }
5988 
5989 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5990  gpa_t addr)
5991 {
5992  struct kvm_io_bus *bus;
5993  int dev_idx, srcu_idx;
5994  struct kvm_io_device *iodev = NULL;
5995 
5996  srcu_idx = srcu_read_lock(&kvm->srcu);
5997 
5998  bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5999  if (!bus)
6000  goto out_unlock;
6001 
6002  dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6003  if (dev_idx < 0)
6004  goto out_unlock;
6005 
6006  iodev = bus->range[dev_idx].dev;
6007 
6008 out_unlock:
6009  srcu_read_unlock(&kvm->srcu, srcu_idx);
6010 
6011  return iodev;
6012 }
6014 
6015 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6016  int (*get)(void *, u64 *), int (*set)(void *, u64),
6017  const char *fmt)
6018 {
6019  int ret;
6020  struct kvm_stat_data *stat_data = inode->i_private;
6021 
6022  /*
6023  * The debugfs files are a reference to the kvm struct which
6024  * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6025  * avoids the race between open and the removal of the debugfs directory.
6026  */
6027  if (!kvm_get_kvm_safe(stat_data->kvm))
6028  return -ENOENT;
6029 
6030  ret = simple_attr_open(inode, file, get,
6031  kvm_stats_debugfs_mode(stat_data->desc) & 0222
6032  ? set : NULL, fmt);
6033  if (ret)
6034  kvm_put_kvm(stat_data->kvm);
6035 
6036  return ret;
6037 }
6038 
6039 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6040 {
6041  struct kvm_stat_data *stat_data = inode->i_private;
6042 
6043  simple_attr_release(inode, file);
6044  kvm_put_kvm(stat_data->kvm);
6045 
6046  return 0;
6047 }
6048 
6049 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6050 {
6051  *val = *(u64 *)((void *)(&kvm->stat) + offset);
6052 
6053  return 0;
6054 }
6055 
6056 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6057 {
6058  *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6059 
6060  return 0;
6061 }
6062 
6063 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6064 {
6065  unsigned long i;
6066  struct kvm_vcpu *vcpu;
6067 
6068  *val = 0;
6069 
6070  kvm_for_each_vcpu(i, vcpu, kvm)
6071  *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6072 
6073  return 0;
6074 }
6075 
6076 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6077 {
6078  unsigned long i;
6079  struct kvm_vcpu *vcpu;
6080 
6081  kvm_for_each_vcpu(i, vcpu, kvm)
6082  *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6083 
6084  return 0;
6085 }
6086 
6087 static int kvm_stat_data_get(void *data, u64 *val)
6088 {
6089  int r = -EFAULT;
6090  struct kvm_stat_data *stat_data = data;
6091 
6092  switch (stat_data->kind) {
6093  case KVM_STAT_VM:
6094  r = kvm_get_stat_per_vm(stat_data->kvm,
6095  stat_data->desc->desc.offset, val);
6096  break;
6097  case KVM_STAT_VCPU:
6098  r = kvm_get_stat_per_vcpu(stat_data->kvm,
6099  stat_data->desc->desc.offset, val);
6100  break;
6101  }
6102 
6103  return r;
6104 }
6105 
6106 static int kvm_stat_data_clear(void *data, u64 val)
6107 {
6108  int r = -EFAULT;
6109  struct kvm_stat_data *stat_data = data;
6110 
6111  if (val)
6112  return -EINVAL;
6113 
6114  switch (stat_data->kind) {
6115  case KVM_STAT_VM:
6116  r = kvm_clear_stat_per_vm(stat_data->kvm,
6117  stat_data->desc->desc.offset);
6118  break;
6119  case KVM_STAT_VCPU:
6120  r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6121  stat_data->desc->desc.offset);
6122  break;
6123  }
6124 
6125  return r;
6126 }
6127 
6128 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6129 {
6130  __simple_attr_check_format("%llu\n", 0ull);
6131  return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6132  kvm_stat_data_clear, "%llu\n");
6133 }
6134 
6135 static const struct file_operations stat_fops_per_vm = {
6136  .owner = THIS_MODULE,
6137  .open = kvm_stat_data_open,
6138  .release = kvm_debugfs_release,
6139  .read = simple_attr_read,
6140  .write = simple_attr_write,
6141  .llseek = no_llseek,
6142 };
6143 
6144 static int vm_stat_get(void *_offset, u64 *val)
6145 {
6146  unsigned offset = (long)_offset;
6147  struct kvm *kvm;
6148  u64 tmp_val;
6149 
6150  *val = 0;
6151  mutex_lock(&kvm_lock);
6152  list_for_each_entry(kvm, &vm_list, vm_list) {
6153  kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6154  *val += tmp_val;
6155  }
6156  mutex_unlock(&kvm_lock);
6157  return 0;
6158 }
6159 
6160 static int vm_stat_clear(void *_offset, u64 val)
6161 {
6162  unsigned offset = (long)_offset;
6163  struct kvm *kvm;
6164 
6165  if (val)
6166  return -EINVAL;
6167 
6168  mutex_lock(&kvm_lock);
6169  list_for_each_entry(kvm, &vm_list, vm_list) {
6170  kvm_clear_stat_per_vm(kvm, offset);
6171  }
6172  mutex_unlock(&kvm_lock);
6173 
6174  return 0;
6175 }
6176 
6178 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6179 
6180 static int vcpu_stat_get(void *_offset, u64 *val)
6181 {
6182  unsigned offset = (long)_offset;
6183  struct kvm *kvm;
6184  u64 tmp_val;
6185 
6186  *val = 0;
6187  mutex_lock(&kvm_lock);
6188  list_for_each_entry(kvm, &vm_list, vm_list) {
6189  kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6190  *val += tmp_val;
6191  }
6192  mutex_unlock(&kvm_lock);
6193  return 0;
6194 }
6195 
6196 static int vcpu_stat_clear(void *_offset, u64 val)
6197 {
6198  unsigned offset = (long)_offset;
6199  struct kvm *kvm;
6200 
6201  if (val)
6202  return -EINVAL;
6203 
6204  mutex_lock(&kvm_lock);
6205  list_for_each_entry(kvm, &vm_list, vm_list) {
6206  kvm_clear_stat_per_vcpu(kvm, offset);
6207  }
6208  mutex_unlock(&kvm_lock);
6209 
6210  return 0;
6211 }
6212 
6214  "%llu\n");
6215 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6216 
6217 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6218 {
6219  struct kobj_uevent_env *env;
6220  unsigned long long created, active;
6221 
6222  if (!kvm_dev.this_device || !kvm)
6223  return;
6224 
6225  mutex_lock(&kvm_lock);
6226  if (type == KVM_EVENT_CREATE_VM) {
6228  kvm_active_vms++;
6229  } else if (type == KVM_EVENT_DESTROY_VM) {
6230  kvm_active_vms--;
6231  }
6232  created = kvm_createvm_count;
6233  active = kvm_active_vms;
6234  mutex_unlock(&kvm_lock);
6235 
6236  env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6237  if (!env)
6238  return;
6239 
6240  add_uevent_var(env, "CREATED=%llu", created);
6241  add_uevent_var(env, "COUNT=%llu", active);
6242 
6243  if (type == KVM_EVENT_CREATE_VM) {
6244  add_uevent_var(env, "EVENT=create");
6245  kvm->userspace_pid = task_pid_nr(current);
6246  } else if (type == KVM_EVENT_DESTROY_VM) {
6247  add_uevent_var(env, "EVENT=destroy");
6248  }
6249  add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6250 
6251  if (!IS_ERR(kvm->debugfs_dentry)) {
6252  char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6253 
6254  if (p) {
6255  tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6256  if (!IS_ERR(tmp))
6257  add_uevent_var(env, "STATS_PATH=%s", tmp);
6258  kfree(p);
6259  }
6260  }
6261  /* no need for checks, since we are adding at most only 5 keys */
6262  env->envp[env->envp_idx++] = NULL;
6263  kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6264  kfree(env);
6265 }
6266 
6267 static void kvm_init_debug(void)
6268 {
6269  const struct file_operations *fops;
6270  const struct _kvm_stats_desc *pdesc;
6271  int i;
6272 
6273  kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6274 
6275  for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6276  pdesc = &kvm_vm_stats_desc[i];
6277  if (kvm_stats_debugfs_mode(pdesc) & 0222)
6278  fops = &vm_stat_fops;
6279  else
6280  fops = &vm_stat_readonly_fops;
6281  debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6283  (void *)(long)pdesc->desc.offset, fops);
6284  }
6285 
6286  for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6287  pdesc = &kvm_vcpu_stats_desc[i];
6288  if (kvm_stats_debugfs_mode(pdesc) & 0222)
6289  fops = &vcpu_stat_fops;
6290  else
6291  fops = &vcpu_stat_readonly_fops;
6292  debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6294  (void *)(long)pdesc->desc.offset, fops);
6295  }
6296 }
6297 
6298 static inline
6299 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6300 {
6301  return container_of(pn, struct kvm_vcpu, preempt_notifier);
6302 }
6303 
6304 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6305 {
6306  struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6307 
6308  WRITE_ONCE(vcpu->preempted, false);
6309  WRITE_ONCE(vcpu->ready, false);
6310 
6311  __this_cpu_write(kvm_running_vcpu, vcpu);
6312  kvm_arch_sched_in(vcpu, cpu);
6313  kvm_arch_vcpu_load(vcpu, cpu);
6314 }
6315 
6316 static void kvm_sched_out(struct preempt_notifier *pn,
6317  struct task_struct *next)
6318 {
6319  struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6320 
6321  if (current->on_rq) {
6322  WRITE_ONCE(vcpu->preempted, true);
6323  WRITE_ONCE(vcpu->ready, true);
6324  }
6325  kvm_arch_vcpu_put(vcpu);
6326  __this_cpu_write(kvm_running_vcpu, NULL);
6327 }
6328 
6329 /**
6330  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6331  *
6332  * We can disable preemption locally around accessing the per-CPU variable,
6333  * and use the resolved vcpu pointer after enabling preemption again,
6334  * because even if the current thread is migrated to another CPU, reading
6335  * the per-CPU value later will give us the same value as we update the
6336  * per-CPU variable in the preempt notifier handlers.
6337  */
6338 struct kvm_vcpu *kvm_get_running_vcpu(void)
6339 {
6340  struct kvm_vcpu *vcpu;
6341 
6342  preempt_disable();
6343  vcpu = __this_cpu_read(kvm_running_vcpu);
6344  preempt_enable();
6345 
6346  return vcpu;
6347 }
6349 
6350 /**
6351  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6352  */
6353 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6354 {
6355  return &kvm_running_vcpu;
6356 }
6357 
6358 #ifdef CONFIG_GUEST_PERF_EVENTS
6359 static unsigned int kvm_guest_state(void)
6360 {
6361  struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6362  unsigned int state;
6363 
6364  if (!kvm_arch_pmi_in_guest(vcpu))
6365  return 0;
6366 
6367  state = PERF_GUEST_ACTIVE;
6368  if (!kvm_arch_vcpu_in_kernel(vcpu))
6369  state |= PERF_GUEST_USER;
6370 
6371  return state;
6372 }
6373 
6374 static unsigned long kvm_guest_get_ip(void)
6375 {
6376  struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6377 
6378  /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6379  if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6380  return 0;
6381 
6382  return kvm_arch_vcpu_get_ip(vcpu);
6383 }
6384 
6385 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6386  .state = kvm_guest_state,
6387  .get_ip = kvm_guest_get_ip,
6388  .handle_intel_pt_intr = NULL,
6389 };
6390 
6391 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6392 {
6393  kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6394  perf_register_guest_info_callbacks(&kvm_guest_cbs);
6395 }
6396 void kvm_unregister_perf_callbacks(void)
6397 {
6398  perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6399 }
6400 #endif
6401 
6402 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6403 {
6404  int r;
6405  int cpu;
6406 
6407 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6408  r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6409  kvm_online_cpu, kvm_offline_cpu);
6410  if (r)
6411  return r;
6412 
6413  register_syscore_ops(&kvm_syscore_ops);
6414 #endif
6415 
6416  /* A kmem cache lets us meet the alignment requirements of fx_save. */
6417  if (!vcpu_align)
6418  vcpu_align = __alignof__(struct kvm_vcpu);
6419  kvm_vcpu_cache =
6420  kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6421  SLAB_ACCOUNT,
6422  offsetof(struct kvm_vcpu, arch),
6423  offsetofend(struct kvm_vcpu, stats_id)
6424  - offsetof(struct kvm_vcpu, arch),
6425  NULL);
6426  if (!kvm_vcpu_cache) {
6427  r = -ENOMEM;
6428  goto err_vcpu_cache;
6429  }
6430 
6431  for_each_possible_cpu(cpu) {
6432  if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6433  GFP_KERNEL, cpu_to_node(cpu))) {
6434  r = -ENOMEM;
6435  goto err_cpu_kick_mask;
6436  }
6437  }
6438 
6439  r = kvm_irqfd_init();
6440  if (r)
6441  goto err_irqfd;
6442 
6443  r = kvm_async_pf_init();
6444  if (r)
6445  goto err_async_pf;
6446 
6447  kvm_chardev_ops.owner = module;
6448  kvm_vm_fops.owner = module;
6449  kvm_vcpu_fops.owner = module;
6450  kvm_device_fops.owner = module;
6451 
6452  kvm_preempt_ops.sched_in = kvm_sched_in;
6453  kvm_preempt_ops.sched_out = kvm_sched_out;
6454 
6455  kvm_init_debug();
6456 
6457  r = kvm_vfio_ops_init();
6458  if (WARN_ON_ONCE(r))
6459  goto err_vfio;
6460 
6461  kvm_gmem_init(module);
6462 
6463  /*
6464  * Registration _must_ be the very last thing done, as this exposes
6465  * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6466  */
6467  r = misc_register(&kvm_dev);
6468  if (r) {
6469  pr_err("kvm: misc device register failed\n");
6470  goto err_register;
6471  }
6472 
6473  return 0;
6474 
6475 err_register:
6477 err_vfio:
6479 err_async_pf:
6480  kvm_irqfd_exit();
6481 err_irqfd:
6482 err_cpu_kick_mask:
6483  for_each_possible_cpu(cpu)
6484  free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6485  kmem_cache_destroy(kvm_vcpu_cache);
6486 err_vcpu_cache:
6487 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6488  unregister_syscore_ops(&kvm_syscore_ops);
6489  cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6490 #endif
6491  return r;
6492 }
6494 
6495 void kvm_exit(void)
6496 {
6497  int cpu;
6498 
6499  /*
6500  * Note, unregistering /dev/kvm doesn't strictly need to come first,
6501  * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6502  * to KVM while the module is being stopped.
6503  */
6504  misc_deregister(&kvm_dev);
6505 
6506  debugfs_remove_recursive(kvm_debugfs_dir);
6507  for_each_possible_cpu(cpu)
6508  free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6509  kmem_cache_destroy(kvm_vcpu_cache);
6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6513  unregister_syscore_ops(&kvm_syscore_ops);
6514  cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6515 #endif
6516  kvm_irqfd_exit();
6517 }
6519 
6521  struct kvm *kvm;
6522  struct task_struct *parent;
6523  struct completion init_done;
6524  kvm_vm_thread_fn_t thread_fn;
6525  uintptr_t data;
6526  int err;
6527 };
6528 
6529 static int kvm_vm_worker_thread(void *context)
6530 {
6531  /*
6532  * The init_context is allocated on the stack of the parent thread, so
6533  * we have to locally copy anything that is needed beyond initialization
6534  */
6535  struct kvm_vm_worker_thread_context *init_context = context;
6536  struct task_struct *parent;
6537  struct kvm *kvm = init_context->kvm;
6538  kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6539  uintptr_t data = init_context->data;
6540  int err;
6541 
6542  err = kthread_park(current);
6543  /* kthread_park(current) is never supposed to return an error */
6544  WARN_ON(err != 0);
6545  if (err)
6546  goto init_complete;
6547 
6548  err = cgroup_attach_task_all(init_context->parent, current);
6549  if (err) {
6550  kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6551  __func__, err);
6552  goto init_complete;
6553  }
6554 
6555  set_user_nice(current, task_nice(init_context->parent));
6556 
6557 init_complete:
6558  init_context->err = err;
6559  complete(&init_context->init_done);
6560  init_context = NULL;
6561 
6562  if (err)
6563  goto out;
6564 
6565  /* Wait to be woken up by the spawner before proceeding. */
6566  kthread_parkme();
6567 
6568  if (!kthread_should_stop())
6569  err = thread_fn(kvm, data);
6570 
6571 out:
6572  /*
6573  * Move kthread back to its original cgroup to prevent it lingering in
6574  * the cgroup of the VM process, after the latter finishes its
6575  * execution.
6576  *
6577  * kthread_stop() waits on the 'exited' completion condition which is
6578  * set in exit_mm(), via mm_release(), in do_exit(). However, the
6579  * kthread is removed from the cgroup in the cgroup_exit() which is
6580  * called after the exit_mm(). This causes the kthread_stop() to return
6581  * before the kthread actually quits the cgroup.
6582  */
6583  rcu_read_lock();
6584  parent = rcu_dereference(current->real_parent);
6585  get_task_struct(parent);
6586  rcu_read_unlock();
6587  cgroup_attach_task_all(parent, current);
6588  put_task_struct(parent);
6589 
6590  return err;
6591 }
6592 
6593 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6594  uintptr_t data, const char *name,
6595  struct task_struct **thread_ptr)
6596 {
6597  struct kvm_vm_worker_thread_context init_context = {};
6598  struct task_struct *thread;
6599 
6600  *thread_ptr = NULL;
6601  init_context.kvm = kvm;
6602  init_context.parent = current;
6603  init_context.thread_fn = thread_fn;
6604  init_context.data = data;
6605  init_completion(&init_context.init_done);
6606 
6607  thread = kthread_run(kvm_vm_worker_thread, &init_context,
6608  "%s-%d", name, task_pid_nr(current));
6609  if (IS_ERR(thread))
6610  return PTR_ERR(thread);
6611 
6612  /* kthread_run is never supposed to return NULL */
6613  WARN_ON(thread == NULL);
6614 
6615  wait_for_completion(&init_context.init_done);
6616 
6617  if (!init_context.err)
6618  *thread_ptr = thread;
6619 
6620  return init_context.err;
6621 }
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:422
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: arm.c:330
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: arm.c:1683
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
Definition: arm.c:639
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
Definition: arm.c:216
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
Definition: arm.c:188
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, bool line_status)
Definition: arm.c:1196
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
Definition: arm.c:404
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
Definition: arm.c:67
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
Definition: arm.c:1645
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)
Definition: arm.c:518
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
Definition: arm.c:421
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
Definition: arm.c:400
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
Definition: arm.c:136
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
Definition: arm.c:566
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
Definition: arm.c:472
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)
Definition: arm.c:526
struct kvm * kvm_arch_alloc_vm(void)
Definition: arm.c:336
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
Definition: arm.c:416
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
Definition: arm.c:426
int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
Definition: arm.c:72
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: arm.c:1516
int kvm_arch_hardware_enable(void)
Definition: arm.c:2004
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
Definition: arm.c:559
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
Definition: arm.c:346
void kvm_arch_hardware_disable(void)
Definition: arm.c:2024
void kvm_arch_destroy_vm(struct kvm *kvm)
Definition: arm.c:198
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
Definition: arm.c:965
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
Definition: arm.c:357
void kvm_async_pf_vcpu_init(struct kvm_vcpu *vcpu)
Definition: async_pf.c:38
void kvm_async_pf_deinit(void)
Definition: async_pf.c:32
int kvm_async_pf_init(void)
Definition: async_pf.c:22
ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, const struct _kvm_stats_desc *desc, void *stats, size_t size_stats, char __user *user_buffer, size_t size, loff_t *offset)
Definition: binary_stats.c:52
int kvm_vm_ioctl_register_coalesced_mmio(struct kvm *kvm, struct kvm_coalesced_mmio_zone *zone)
int kvm_vm_ioctl_unregister_coalesced_mmio(struct kvm *kvm, struct kvm_coalesced_mmio_zone *zone)
void kvm_coalesced_mmio_free(struct kvm *kvm)
int kvm_coalesced_mmio_init(struct kvm *kvm)
int kvm_dirty_ring_reset(struct kvm *kvm, struct kvm_dirty_ring *ring)
Definition: dirty_ring.c:104
bool kvm_use_dirty_bitmap(struct kvm *kvm)
Definition: dirty_ring.c:24
u32 kvm_dirty_ring_get_rsvd_entries(void)
Definition: dirty_ring.c:19
void kvm_dirty_ring_free(struct kvm_dirty_ring *ring)
Definition: dirty_ring.c:218
void kvm_dirty_ring_push(struct kvm_vcpu *vcpu, u32 slot, u64 offset)
Definition: dirty_ring.c:169
struct page * kvm_dirty_ring_get_page(struct kvm_dirty_ring *ring, u32 offset)
Definition: dirty_ring.c:213
int kvm_dirty_ring_alloc(struct kvm_dirty_ring *ring, int index, u32 size)
Definition: dirty_ring.c:74
static unsigned long cur
Definition: early_alloc.c:17
static unsigned long end
Definition: early_alloc.c:16
void kvm_eventfd_init(struct kvm *kvm)
Definition: eventfd.c:1003
int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
Definition: eventfd.c:994
size_t size
Definition: gen-hyprel.c:133
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
Definition: guest.c:892
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
Definition: guest.c:535
const struct kvm_stats_header kvm_vm_stats_header
Definition: guest.c:36
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
Definition: guest.c:887
const struct _kvm_stats_desc kvm_vcpu_stats_desc[]
Definition: guest.c:45
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
Definition: guest.c:897
const struct kvm_stats_header kvm_vcpu_stats_header
Definition: guest.c:56
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
Definition: guest.c:802
const struct _kvm_stats_desc kvm_vm_stats_desc[]
Definition: guest.c:32
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
Definition: guest.c:808
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
Definition: guest.c:913
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
Definition: guest.c:540
int kvm_gmem_create(struct kvm *kvm, struct kvm_create_guest_memfd *args)
Definition: guest_memfd.c:382
void kvm_gmem_init(struct module *module)
Definition: guest_memfd.c:257
void kvm_gmem_unbind(struct kvm_memory_slot *slot)
Definition: guest_memfd.c:459
int kvm_gmem_bind(struct kvm *kvm, struct kvm_memory_slot *slot, unsigned int fd, loff_t offset)
Definition: guest_memfd.c:397
static int kvm_iodevice_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, gpa_t addr, int l, void *v)
Definition: iodev.h:42
static int kvm_iodevice_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, gpa_t addr, int l, const void *v)
Definition: iodev.h:50
int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi)
Definition: irqchip.c:48
int kvm_set_irq_routing(struct kvm *kvm, const struct kvm_irq_routing_entry *ue, unsigned nr, unsigned flags)
Definition: irqchip.c:168
void kvm_free_irq_routing(struct kvm *kvm)
Definition: irqchip.c:119
bool __weak kvm_arch_can_set_irq_routing(struct kvm *kvm)
Definition: irqchip.c:163
void kvm_put_kvm(struct kvm *kvm)
Definition: kvm_main.c:1419
static int next_segment(unsigned long len, int offset)
Definition: kvm_main.c:3305
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
Definition: kvm_main.c:2735
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
Definition: kvm_main.c:4742
static void kvm_set_page_accessed(struct page *page)
Definition: kvm_main.c:3226
kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
Definition: kvm_main.c:3091
static void kvm_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change)
Definition: kvm_main.c:1729
static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:4038
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
Definition: kvm_main.c:2780
bool kvm_are_all_memslots_empty(struct kvm *kvm)
Definition: kvm_main.c:4958
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, struct kvm_io_device *dev)
Definition: kvm_main.c:5897
static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:4375
#define SANITY_CHECK_MEM_REGION_FIELD(field)
Definition: kvm_main.c:5090
void kvm_destroy_vcpus(struct kvm *kvm)
Definition: kvm_main.c:522
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, struct kvm_io_device *dev)
Definition: kvm_main.c:5941
static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3701
static int kvm_vm_stats_release(struct inode *inode, struct file *file)
Definition: kvm_main.c:5051
static void kvm_replace_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new)
Definition: kvm_main.c:1544
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
Definition: kvm_main.c:4339
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, int offset, int len)
Definition: kvm_main.c:3440
static int hva_to_pfn_remapped(struct vm_area_struct *vma, unsigned long addr, bool write_fault, bool *writable, kvm_pfn_t *p_pfn)
Definition: kvm_main.c:2897
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu)
void vcpu_put(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:219
struct kvm_vcpu *__percpu * kvm_get_running_vcpus(void)
Definition: kvm_main.c:6353
void kvm_release_pfn_dirty(kvm_pfn_t pfn)
Definition: kvm_main.c:3265
static void kvm_update_flags_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new)
Definition: kvm_main.c:1891
static struct kvm_memslots * kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
Definition: kvm_main.c:1464
int kvm_set_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region2 *mem)
Definition: kvm_main.c:2144
static struct miscdevice kvm_dev
Definition: kvm_main.c:5514
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, unsigned long *vcpu_bitmap)
Definition: kvm_main.c:288
static void hardware_disable_all(void)
Definition: kvm_main.c:5708
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len)
Definition: kvm_main.c:3449
#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS
Definition: kvm_main.c:1602
static int kvm_try_get_pfn(kvm_pfn_t pfn)
Definition: kvm_main.c:2887
#define ITOA_MAX_LEN
Definition: kvm_main.c:74
static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3720
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
Definition: kvm_main.c:6402
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:2685
#define KVM_COMPAT(c)
Definition: kvm_main.c:139
unsigned int halt_poll_ns
Definition: kvm_main.c:80
struct dentry * kvm_debugfs_dir
Definition: kvm_main.c:113
#define KVM_EVENT_CREATE_VM
Definition: kvm_main.c:147
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, int len)
Definition: kvm_main.c:3328
static const struct file_operations stat_fops_per_vm
Definition: kvm_main.c:116
static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
Definition: kvm_main.c:5066
static int kvm_vm_worker_thread(void *context)
Definition: kvm_main.c:6529
struct kvm_device * kvm_device_from_filp(struct file *filp)
Definition: kvm_main.c:4727
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
Definition: kvm_main.c:4401
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
Definition: kvm_main.c:5720
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
Definition: kvm_main.c:3660
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
Definition: kvm_main.c:6304
__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
Definition: kvm_main.c:155
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, void *val)
Definition: kvm_main.c:5878
void kvm_set_pfn_dirty(kvm_pfn_t pfn)
Definition: kvm_main.c:3285
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
Definition: kvm_main.c:2876
static unsigned long long kvm_active_vms
Definition: kvm_main.c:151
static int kvm_debugfs_open(struct inode *inode, struct file *file, int(*get)(void *, u64 *), int(*set)(void *, u64), const char *fmt)
Definition: kvm_main.c:6015
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
Definition: kvm_main.c:3346
static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3739
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, const void *val, long cookie)
Definition: kvm_main.c:5828
static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
Definition: kvm_main.c:4892
static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
Definition: kvm_main.c:1453
static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
Definition: kvm_main.c:132
static struct kmem_cache * kvm_vcpu_cache
Definition: kvm_main.c:108
static int kvm_device_release(struct inode *inode, struct file *filp)
Definition: kvm_main.c:4704
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3692
static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, struct kvm_io_range *range, const void *val)
Definition: kvm_main.c:5786
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: kvm_main.c:4681
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, int offset, int len)
Definition: kvm_main.c:3431
static int vcpu_stat_clear(void *_offset, u64 val)
Definition: kvm_main.c:6196
static const struct kvm_device_ops * kvm_device_ops_table[KVM_DEV_TYPE_MAX]
Definition: kvm_main.c:4735
static int check_user_page_hwpoison(unsigned long addr)
Definition: kvm_main.c:2787
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region2 *mem)
Definition: kvm_main.c:2156
static int vm_stat_get(void *_offset, u64 *val)
Definition: kvm_main.c:6144
struct page * gfn_to_page(struct kvm *kvm, gfn_t gfn)
Definition: kvm_main.c:3126
bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:4051
void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
Definition: kvm_main.c:367
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, bool interruptible, bool *writable, kvm_pfn_t *pfn)
Definition: kvm_main.c:2828
static void kvm_activate_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new)
Definition: kvm_main.c:1791
void kvm_flush_remote_tlbs(struct kvm *kvm)
Definition: kvm_main.c:346
static struct kvm * kvm_create_vm(unsigned long type, const char *fdname)
Definition: kvm_main.c:1191
static bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
Definition: kvm_main.c:251
static void kvm_insert_gfn_node(struct kvm_memslots *slots, struct kvm_memory_slot *slot)
Definition: kvm_main.c:1492
kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, bool *writable)
Definition: kvm_main.c:3063
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:2748
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
Definition: kvm_main.c:4153
static int kvm_device_ioctl_attr(struct kvm_device *dev, int(*accessor)(struct kvm_device *dev, struct kvm_device_attr *attr), unsigned long arg)
Definition: kvm_main.c:4665
void vcpu_load(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:208
static void kvm_sched_out(struct preempt_notifier *pn, struct task_struct *next)
Definition: kvm_main.c:6316
static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, size_t size, loff_t *offset)
Definition: kvm_main.c:5041
static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
Definition: kvm_main.c:1633
kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, bool interruptible, bool *async, bool write_fault, bool *writable, hva_t *hva)
Definition: kvm_main.c:3031
void kvm_release_page_clean(struct page *page)
Definition: kvm_main.c:3232
static const struct vm_operations_struct kvm_vcpu_vm_ops
Definition: kvm_main.c:4149
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:4011
bool kvm_is_zone_device_page(struct page *page)
Definition: kvm_main.c:159
static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
Definition: kvm_main.c:4360
static int kvm_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change)
Definition: kvm_main.c:1691
void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
Definition: kvm_main.c:3144
static long kvm_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: kvm_main.c:5473
static int __kvm_write_guest_page(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn, const void *data, int offset, int len)
Definition: kvm_main.c:3414
unsigned int halt_poll_ns_grow_start
Definition: kvm_main.c:90
static struct file_operations kvm_device_fops
Definition: kvm_main.c:4720
static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:506
void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3842
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
Definition: kvm_main.c:3615
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
Definition: kvm_main.c:4056
static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, struct kvm_io_range *range, void *val)
Definition: kvm_main.c:5857
static int kvm_io_bus_cmp(const struct kvm_io_range *r1, const struct kvm_io_range *r2)
Definition: kvm_main.c:5732
static void ack_kick(void *_completed)
Definition: kvm_main.c:247
static const struct file_operations kvm_vm_stats_fops
Definition: kvm_main.c:5059
static int hardware_enable_all(void)
Definition: kvm_main.c:5703
static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
Definition: kvm_main.c:2709
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n")
static void kvm_destroy_vm_debugfs(struct kvm *kvm)
Definition: kvm_main.c:1070
static const struct file_operations kvm_vcpu_stats_fops
Definition: kvm_main.c:4368
struct kvm_memory_slot * gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
Definition: kvm_main.c:2630
static unsigned long long kvm_createvm_count
Definition: kvm_main.c:150
static void kvm_destroy_pm_notifier(struct kvm *kvm)
Definition: kvm_main.c:1011
int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, uintptr_t data, const char *name, struct task_struct **thread_ptr)
Definition: kvm_main.c:6593
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
Definition: kvm_main.c:4167
module_param(halt_poll_ns, uint, 0644)
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
Definition: kvm_main.c:1176
static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, size_t size, loff_t *offset)
Definition: kvm_main.c:4350
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
Definition: kvm_main.c:3403
void kvm_get_kvm(struct kvm *kvm)
Definition: kvm_main.c:1403
int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
Definition: kvm_main.c:1186
static int kvm_stat_data_open(struct inode *inode, struct file *file)
Definition: kvm_main.c:6128
unsigned int halt_poll_ns_grow
Definition: kvm_main.c:85
MODULE_AUTHOR("Qumranet")
static void kvm_create_memslot(struct kvm *kvm, struct kvm_memory_slot *new)
Definition: kvm_main.c:1858
bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3764
static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, gfn_t start, gfn_t end)
Definition: kvm_main.c:1999
static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, struct cpumask *tmp, int current_cpu)
Definition: kvm_main.c:260
static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
Definition: kvm_main.c:6076
static int kvm_no_compat_open(struct inode *inode, struct file *file)
Definition: kvm_main.c:135
static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
Definition: kvm_main.c:4930
#define KVM_EVENT_DESTROY_VM
Definition: kvm_main.c:148
static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
Definition: kvm_main.c:230
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, gpa_t addr, int len)
Definition: kvm_main.c:5762
static int kvm_dev_ioctl_create_vm(unsigned long type)
Definition: kvm_main.c:5430
static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
Definition: kvm_main.c:4123
int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
Definition: kvm_main.c:3152
static int vm_stat_clear(void *_offset, u64 val)
Definition: kvm_main.c:6160
struct page * kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
Definition: kvm_main.c:179
void kvm_unregister_device_ops(u32 type)
Definition: kvm_main.c:4754
static struct kvm_vcpu * preempt_notifier_to_vcpu(struct preempt_notifier *pn)
Definition: kvm_main.c:6299
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
Definition: kvm_main.c:3969
static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, bool *writable, kvm_pfn_t *pfn)
Definition: kvm_main.c:2800
void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot)
Definition: kvm_main.c:380
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len)
Definition: kvm_main.c:3608
void kvm_exit(void)
Definition: kvm_main.c:6495
static void kvm_replace_gfn_node(struct kvm_memslots *slots, struct kvm_memory_slot *old, struct kvm_memory_slot *new)
Definition: kvm_main.c:1523
kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:3097
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
Definition: kvm_main.c:5757
static void kvm_iodevice_destructor(struct kvm_io_device *dev)
Definition: kvm_main.c:5714
kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
Definition: kvm_main.c:3071
LIST_HEAD(vm_list)
static void kvm_copy_memslot(struct kvm_memory_slot *dest, const struct kvm_memory_slot *src)
Definition: kvm_main.c:1803
static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, struct kvm_memory_slot *b)
Definition: kvm_main.c:1477
static void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, ktime_t end, bool success)
Definition: kvm_main.c:3796
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
Definition: kvm_main.c:1016
bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:4033
static void kvm_invalidate_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *invalid_slot)
Definition: kvm_main.c:1816
static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, struct kvm_enable_cap *cap)
Definition: kvm_main.c:4973
static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
Definition: kvm_main.c:6049
bool file_is_kvm(struct file *file)
Definition: kvm_main.c:5424
unsigned int halt_poll_ns_shrink
Definition: kvm_main.c:95
int __weak kvm_arch_post_init_vm(struct kvm *kvm)
Definition: kvm_main.c:1167
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:3669
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
Definition: kvm_main.c:2742
static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, void *data, int offset, unsigned long len)
Definition: kvm_main.c:3386
static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, gfn_t *nr_pages, bool write)
Definition: kvm_main.c:2714
static struct file_operations kvm_vcpu_fops
Definition: kvm_main.c:4175
static void kvm_flush_shadow_all(struct kvm *kvm)
Definition: kvm_main.c:394
static int kvm_init_mmu_notifier(struct kvm *kvm)
Definition: kvm_main.c:977
static int check_memory_region_flags(struct kvm *kvm, const struct kvm_userspace_memory_region2 *mem)
Definition: kvm_main.c:1605
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
Definition: kvm_main.c:4228
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
Definition: kvm_main.c:340
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:4186
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len)
Definition: kvm_main.c:3571
int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, struct page **pages, int nr_pages)
Definition: kvm_main.c:3103
bool kvm_get_kvm_safe(struct kvm *kvm)
Definition: kvm_main.c:1413
static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
Definition: kvm_main.c:1088
static void kvm_destroy_devices(struct kvm *kvm)
Definition: kvm_main.c:1326
static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
Definition: kvm_main.c:482
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, const void *val)
Definition: kvm_main.c:5807
bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, struct kvm_vcpu *except)
Definition: kvm_main.c:314
static int vcpu_stat_get(void *_offset, u64 *val)
Definition: kvm_main.c:6180
struct kvm_memory_slot * kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:2636
static void kvm_delete_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *invalid_slot)
Definition: kvm_main.c:1866
struct kvm_vcpu * kvm_get_running_vcpu(void)
Definition: kvm_main.c:6338
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, gpa_t gpa, unsigned long len)
Definition: kvm_main.c:3532
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:2677
static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
Definition: kvm_main.c:1057
int __kvm_set_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region2 *mem)
Definition: kvm_main.c:2020
DEFINE_MUTEX(kvm_lock)
kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
Definition: kvm_main.c:3078
static int kvm_set_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change)
Definition: kvm_main.c:1904
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3931
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, int *is_dirty, struct kvm_memory_slot **memslot)
Definition: kvm_main.c:2173
EXPORT_SYMBOL_GPL(halt_poll_ns)
static int kvm_ioctl_create_device(struct kvm *kvm, struct kvm_create_device *cd)
Definition: kvm_main.c:4760
void kvm_put_kvm_no_destroy(struct kvm *kvm)
Definition: kvm_main.c:1433
struct kvm_io_device * kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr)
Definition: kvm_main.c:5989
static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, void *data, int offset, int len)
Definition: kvm_main.c:3313
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned int offset, unsigned long len)
Definition: kvm_main.c:3540
static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
Definition: kvm_main.c:4655
void kvm_release_page_dirty(struct page *page)
Definition: kvm_main.c:3256
static int kvm_stat_data_get(void *data, u64 *val)
Definition: kvm_main.c:6087
static void kvm_init_debug(void)
Definition: kvm_main.c:6267
static int kvm_stat_data_clear(void *data, u64 val)
Definition: kvm_main.c:6106
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
Definition: kvm_main.c:6217
static __read_mostly struct preempt_ops kvm_preempt_ops
Definition: kvm_main.c:110
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
Definition: kvm_main.c:2669
static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
Definition: kvm_main.c:6063
void kvm_set_pfn_accessed(kvm_pfn_t pfn)
Definition: kvm_main.c:3295
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
Definition: kvm_main.c:2773
MODULE_LICENSE("GPL")
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3915
static void kvm_erase_gfn_node(struct kvm_memslots *slots, struct kvm_memory_slot *slot)
Definition: kvm_main.c:1517
static void kvm_set_page_dirty(struct page *page)
Definition: kvm_main.c:3220
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, bool *writable)
Definition: kvm_main.c:2762
static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
Definition: kvm_main.c:6056
kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, bool *async, bool write_fault, bool *writable)
Definition: kvm_main.c:2980
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len)
Definition: kvm_main.c:3337
static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
Definition: kvm_main.c:1026
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, gfn_t *nr_pages)
Definition: kvm_main.c:2729
static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
Definition: kvm_main.c:4112
void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn)
Definition: kvm_main.c:3635
static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
Definition: kvm_main.c:1038
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
Definition: kvm_main.c:3366
static struct file_operations kvm_chardev_ops
Definition: kvm_main.c:5508
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned int offset, unsigned long len)
Definition: kvm_main.c:3578
int __attribute__((weak))
Definition: kvm_main.c:4952
kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:3085
static bool kvm_is_ad_tracked_page(struct page *page)
Definition: kvm_main.c:3211
static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
Definition: kvm_main.c:4818
static int kvm_debugfs_release(struct inode *inode, struct file *file)
Definition: kvm_main.c:6039
static int kvm_vm_release(struct inode *inode, struct file *filp)
Definition: kvm_main.c:1439
static struct file_operations kvm_vm_fops
Definition: kvm_main.c:5417
void kvm_release_pfn_clean(kvm_pfn_t pfn)
Definition: kvm_main.c:3241
void kvm_sigset_activate(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3678
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
Definition: kvm_main.c:3186
static void kvm_init_pm_notifier(struct kvm *kvm)
Definition: kvm_main.c:1007
static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, struct gfn_to_hva_cache *ghc, gpa_t gpa, unsigned long len)
Definition: kvm_main.c:3491
static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3818
static void kvm_destroy_vm(struct kvm *kvm)
Definition: kvm_main.c:1341
static void kvm_move_memslot(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new, struct kvm_memory_slot *invalid_slot)
Definition: kvm_main.c:1878
static long kvm_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: kvm_main.c:5098
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, unsigned long len)
Definition: kvm_main.c:3470
#define KVM_MMU_LOCK(kvm)
Definition: kvm_mm.h:19
#define KVM_MMU_LOCK_INIT(kvm)
Definition: kvm_mm.h:18
#define KVM_MMU_UNLOCK(kvm)
Definition: kvm_mm.h:20
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask)
Definition: mmu.c:1185
int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change)
Definition: mmu.c:1990
int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
Definition: mmu.c:175
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
Definition: mmu.c:1799
void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
Definition: mmu.c:2063
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
Definition: mmu.c:2050
void kvm_arch_flush_shadow_all(struct kvm *kvm)
Definition: mmu.c:2058
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
Definition: mmu.c:1811
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
Definition: mmu.c:1765
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
Definition: mmu.c:1753
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
Definition: mmu.c:2054
int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
Definition: mmu.c:169
void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change)
Definition: mmu.c:1946
void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start, unsigned long end, bool may_block)
Definition: pfncache.c:25
void(* destructor)(struct kvm_io_device *this)
Definition: iodev.h:28
const struct kvm_io_device_ops * ops
Definition: iodev.h:33
struct completion init_done
Definition: kvm_main.c:6523
struct task_struct * parent
Definition: kvm_main.c:6522
kvm_vm_thread_fn_t thread_fn
Definition: kvm_main.c:6524
static char * fmt
Definition: sys_regs.h:104
void kvm_vfio_ops_exit(void)
Definition: vfio.c:391
int kvm_vfio_ops_init(void)
Definition: vfio.c:386
bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
Definition: vgic-its.c:2824