KVM
guest.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_hypercalls.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_nested.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33  KVM_GENERIC_VM_STATS()
34 };
35 
36 const struct kvm_stats_header kvm_vm_stats_header = {
37  .name_size = KVM_STATS_NAME_SIZE,
38  .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
39  .id_offset = sizeof(struct kvm_stats_header),
40  .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41  .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42  sizeof(kvm_vm_stats_desc),
43 };
44 
45 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
46  KVM_GENERIC_VCPU_STATS(),
47  STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
48  STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
49  STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
50  STATS_DESC_COUNTER(VCPU, mmio_exit_user),
51  STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
52  STATS_DESC_COUNTER(VCPU, signal_exits),
53  STATS_DESC_COUNTER(VCPU, exits)
54 };
55 
56 const struct kvm_stats_header kvm_vcpu_stats_header = {
57  .name_size = KVM_STATS_NAME_SIZE,
58  .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
59  .id_offset = sizeof(struct kvm_stats_header),
60  .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
61  .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
62  sizeof(kvm_vcpu_stats_desc),
63 };
64 
65 static bool core_reg_offset_is_vreg(u64 off)
66 {
67  return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
68  off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
69 }
70 
71 static u64 core_reg_offset_from_id(u64 id)
72 {
73  return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
74 }
75 
76 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
77 {
78  int size;
79 
80  switch (off) {
81  case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
82  KVM_REG_ARM_CORE_REG(regs.regs[30]):
83  case KVM_REG_ARM_CORE_REG(regs.sp):
84  case KVM_REG_ARM_CORE_REG(regs.pc):
85  case KVM_REG_ARM_CORE_REG(regs.pstate):
86  case KVM_REG_ARM_CORE_REG(sp_el1):
87  case KVM_REG_ARM_CORE_REG(elr_el1):
88  case KVM_REG_ARM_CORE_REG(spsr[0]) ...
89  KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
90  size = sizeof(__u64);
91  break;
92 
93  case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
94  KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
95  size = sizeof(__uint128_t);
96  break;
97 
98  case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
99  case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100  size = sizeof(__u32);
101  break;
102 
103  default:
104  return -EINVAL;
105  }
106 
107  if (!IS_ALIGNED(off, size / sizeof(__u32)))
108  return -EINVAL;
109 
110  /*
111  * The KVM_REG_ARM64_SVE regs must be used instead of
112  * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113  * SVE-enabled vcpus:
114  */
115  if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116  return -EINVAL;
117 
118  return size;
119 }
120 
121 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122 {
123  u64 off = core_reg_offset_from_id(reg->id);
124  int size = core_reg_size_from_offset(vcpu, off);
125 
126  if (size < 0)
127  return NULL;
128 
129  if (KVM_REG_SIZE(reg->id) != size)
130  return NULL;
131 
132  switch (off) {
133  case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134  KVM_REG_ARM_CORE_REG(regs.regs[30]):
135  off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136  off /= 2;
137  return &vcpu->arch.ctxt.regs.regs[off];
138 
139  case KVM_REG_ARM_CORE_REG(regs.sp):
140  return &vcpu->arch.ctxt.regs.sp;
141 
142  case KVM_REG_ARM_CORE_REG(regs.pc):
143  return &vcpu->arch.ctxt.regs.pc;
144 
145  case KVM_REG_ARM_CORE_REG(regs.pstate):
146  return &vcpu->arch.ctxt.regs.pstate;
147 
148  case KVM_REG_ARM_CORE_REG(sp_el1):
149  return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150 
151  case KVM_REG_ARM_CORE_REG(elr_el1):
152  return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153 
154  case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155  return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156 
157  case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158  return &vcpu->arch.ctxt.spsr_abt;
159 
160  case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161  return &vcpu->arch.ctxt.spsr_und;
162 
163  case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164  return &vcpu->arch.ctxt.spsr_irq;
165 
166  case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167  return &vcpu->arch.ctxt.spsr_fiq;
168 
169  case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170  KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171  off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172  off /= 4;
173  return &vcpu->arch.ctxt.fp_regs.vregs[off];
174 
175  case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176  return &vcpu->arch.ctxt.fp_regs.fpsr;
177 
178  case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179  return &vcpu->arch.ctxt.fp_regs.fpcr;
180 
181  default:
182  return NULL;
183  }
184 }
185 
186 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187 {
188  /*
189  * Because the kvm_regs structure is a mix of 32, 64 and
190  * 128bit fields, we index it as if it was a 32bit
191  * array. Hence below, nr_regs is the number of entries, and
192  * off the index in the "array".
193  */
194  __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195  int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196  void *addr;
197  u32 off;
198 
199  /* Our ID is an index into the kvm_regs struct. */
200  off = core_reg_offset_from_id(reg->id);
201  if (off >= nr_regs ||
202  (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203  return -ENOENT;
204 
205  addr = core_reg_addr(vcpu, reg);
206  if (!addr)
207  return -EINVAL;
208 
209  if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210  return -EFAULT;
211 
212  return 0;
213 }
214 
215 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216 {
217  __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218  int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219  __uint128_t tmp;
220  void *valp = &tmp, *addr;
221  u64 off;
222  int err = 0;
223 
224  /* Our ID is an index into the kvm_regs struct. */
225  off = core_reg_offset_from_id(reg->id);
226  if (off >= nr_regs ||
227  (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228  return -ENOENT;
229 
230  addr = core_reg_addr(vcpu, reg);
231  if (!addr)
232  return -EINVAL;
233 
234  if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235  return -EINVAL;
236 
237  if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238  err = -EFAULT;
239  goto out;
240  }
241 
242  if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243  u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244  switch (mode) {
245  case PSR_AA32_MODE_USR:
246  if (!kvm_supports_32bit_el0())
247  return -EINVAL;
248  break;
249  case PSR_AA32_MODE_FIQ:
250  case PSR_AA32_MODE_IRQ:
251  case PSR_AA32_MODE_SVC:
252  case PSR_AA32_MODE_ABT:
253  case PSR_AA32_MODE_UND:
254  if (!vcpu_el1_is_32bit(vcpu))
255  return -EINVAL;
256  break;
257  case PSR_MODE_EL2h:
258  case PSR_MODE_EL2t:
259  if (!vcpu_has_nv(vcpu))
260  return -EINVAL;
261  fallthrough;
262  case PSR_MODE_EL0t:
263  case PSR_MODE_EL1t:
264  case PSR_MODE_EL1h:
265  if (vcpu_el1_is_32bit(vcpu))
266  return -EINVAL;
267  break;
268  default:
269  err = -EINVAL;
270  goto out;
271  }
272  }
273 
274  memcpy(addr, valp, KVM_REG_SIZE(reg->id));
275 
276  if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
277  int i, nr_reg;
278 
279  switch (*vcpu_cpsr(vcpu)) {
280  /*
281  * Either we are dealing with user mode, and only the
282  * first 15 registers (+ PC) must be narrowed to 32bit.
283  * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
284  */
285  case PSR_AA32_MODE_USR:
286  case PSR_AA32_MODE_SYS:
287  nr_reg = 15;
288  break;
289 
290  /*
291  * Otherwise, this is a privileged mode, and *all* the
292  * registers must be narrowed to 32bit.
293  */
294  default:
295  nr_reg = 31;
296  break;
297  }
298 
299  for (i = 0; i < nr_reg; i++)
300  vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
301 
302  *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
303  }
304 out:
305  return err;
306 }
307 
308 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
309 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
310 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
311 
312 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
313 {
314  unsigned int max_vq, vq;
315  u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
316 
317  if (!vcpu_has_sve(vcpu))
318  return -ENOENT;
319 
320  if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
321  return -EINVAL;
322 
323  memset(vqs, 0, sizeof(vqs));
324 
325  max_vq = vcpu_sve_max_vq(vcpu);
326  for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
327  if (sve_vq_available(vq))
328  vqs[vq_word(vq)] |= vq_mask(vq);
329 
330  if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
331  return -EFAULT;
332 
333  return 0;
334 }
335 
336 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
337 {
338  unsigned int max_vq, vq;
339  u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
340 
341  if (!vcpu_has_sve(vcpu))
342  return -ENOENT;
343 
344  if (kvm_arm_vcpu_sve_finalized(vcpu))
345  return -EPERM; /* too late! */
346 
347  if (WARN_ON(vcpu->arch.sve_state))
348  return -EINVAL;
349 
350  if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
351  return -EFAULT;
352 
353  max_vq = 0;
354  for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
355  if (vq_present(vqs, vq))
356  max_vq = vq;
357 
358  if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
359  return -EINVAL;
360 
361  /*
362  * Vector lengths supported by the host can't currently be
363  * hidden from the guest individually: instead we can only set a
364  * maximum via ZCR_EL2.LEN. So, make sure the available vector
365  * lengths match the set requested exactly up to the requested
366  * maximum:
367  */
368  for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
369  if (vq_present(vqs, vq) != sve_vq_available(vq))
370  return -EINVAL;
371 
372  /* Can't run with no vector lengths at all: */
373  if (max_vq < SVE_VQ_MIN)
374  return -EINVAL;
375 
376  /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
377  vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
378 
379  return 0;
380 }
381 
382 #define SVE_REG_SLICE_SHIFT 0
383 #define SVE_REG_SLICE_BITS 5
384 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
385 #define SVE_REG_ID_BITS 5
386 
387 #define SVE_REG_SLICE_MASK \
388  GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
389  SVE_REG_SLICE_SHIFT)
390 #define SVE_REG_ID_MASK \
391  GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
392 
393 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
394 
395 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
396 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
397 
398 /*
399  * Number of register slices required to cover each whole SVE register.
400  * NOTE: Only the first slice every exists, for now.
401  * If you are tempted to modify this, you must also rework sve_reg_to_region()
402  * to match:
403  */
404 #define vcpu_sve_slices(vcpu) 1
405 
406 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
408  unsigned int koffset; /* offset into sve_state in kernel memory */
409  unsigned int klen; /* length in kernel memory */
410  unsigned int upad; /* extra trailing padding in user memory */
411 };
412 
413 /*
414  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
415  * register copy
416  */
417 static int sve_reg_to_region(struct sve_state_reg_region *region,
418  struct kvm_vcpu *vcpu,
419  const struct kvm_one_reg *reg)
420 {
421  /* reg ID ranges for Z- registers */
422  const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
423  const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
424  SVE_NUM_SLICES - 1);
425 
426  /* reg ID ranges for P- registers and FFR (which are contiguous) */
427  const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
428  const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
429 
430  unsigned int vq;
431  unsigned int reg_num;
432 
433  unsigned int reqoffset, reqlen; /* User-requested offset and length */
434  unsigned int maxlen; /* Maximum permitted length */
435 
436  size_t sve_state_size;
437 
438  const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
439  SVE_NUM_SLICES - 1);
440 
441  /* Verify that the P-regs and FFR really do have contiguous IDs: */
442  BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
443 
444  /* Verify that we match the UAPI header: */
445  BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
446 
447  reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
448 
449  if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
450  if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
451  return -ENOENT;
452 
453  vq = vcpu_sve_max_vq(vcpu);
454 
455  reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
456  SVE_SIG_REGS_OFFSET;
457  reqlen = KVM_SVE_ZREG_SIZE;
458  maxlen = SVE_SIG_ZREG_SIZE(vq);
459  } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
460  if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
461  return -ENOENT;
462 
463  vq = vcpu_sve_max_vq(vcpu);
464 
465  reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
466  SVE_SIG_REGS_OFFSET;
467  reqlen = KVM_SVE_PREG_SIZE;
468  maxlen = SVE_SIG_PREG_SIZE(vq);
469  } else {
470  return -EINVAL;
471  }
472 
473  sve_state_size = vcpu_sve_state_size(vcpu);
474  if (WARN_ON(!sve_state_size))
475  return -EINVAL;
476 
477  region->koffset = array_index_nospec(reqoffset, sve_state_size);
478  region->klen = min(maxlen, reqlen);
479  region->upad = reqlen - region->klen;
480 
481  return 0;
482 }
483 
484 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
485 {
486  int ret;
487  struct sve_state_reg_region region;
488  char __user *uptr = (char __user *)reg->addr;
489 
490  /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
491  if (reg->id == KVM_REG_ARM64_SVE_VLS)
492  return get_sve_vls(vcpu, reg);
493 
494  /* Try to interpret reg ID as an architectural SVE register... */
495  ret = sve_reg_to_region(&region, vcpu, reg);
496  if (ret)
497  return ret;
498 
499  if (!kvm_arm_vcpu_sve_finalized(vcpu))
500  return -EPERM;
501 
502  if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
503  region.klen) ||
504  clear_user(uptr + region.klen, region.upad))
505  return -EFAULT;
506 
507  return 0;
508 }
509 
510 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
511 {
512  int ret;
513  struct sve_state_reg_region region;
514  const char __user *uptr = (const char __user *)reg->addr;
515 
516  /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
517  if (reg->id == KVM_REG_ARM64_SVE_VLS)
518  return set_sve_vls(vcpu, reg);
519 
520  /* Try to interpret reg ID as an architectural SVE register... */
521  ret = sve_reg_to_region(&region, vcpu, reg);
522  if (ret)
523  return ret;
524 
525  if (!kvm_arm_vcpu_sve_finalized(vcpu))
526  return -EPERM;
527 
528  if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
529  region.klen))
530  return -EFAULT;
531 
532  return 0;
533 }
534 
535 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
536 {
537  return -EINVAL;
538 }
539 
540 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
541 {
542  return -EINVAL;
543 }
544 
545 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
546  u64 __user *uindices)
547 {
548  unsigned int i;
549  int n = 0;
550 
551  for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
552  u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
553  int size = core_reg_size_from_offset(vcpu, i);
554 
555  if (size < 0)
556  continue;
557 
558  switch (size) {
559  case sizeof(__u32):
560  reg |= KVM_REG_SIZE_U32;
561  break;
562 
563  case sizeof(__u64):
564  reg |= KVM_REG_SIZE_U64;
565  break;
566 
567  case sizeof(__uint128_t):
568  reg |= KVM_REG_SIZE_U128;
569  break;
570 
571  default:
572  WARN_ON(1);
573  continue;
574  }
575 
576  if (uindices) {
577  if (put_user(reg, uindices))
578  return -EFAULT;
579  uindices++;
580  }
581 
582  n++;
583  }
584 
585  return n;
586 }
587 
588 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
589 {
590  return copy_core_reg_indices(vcpu, NULL);
591 }
592 
593 static const u64 timer_reg_list[] = {
594  KVM_REG_ARM_TIMER_CTL,
595  KVM_REG_ARM_TIMER_CNT,
596  KVM_REG_ARM_TIMER_CVAL,
597  KVM_REG_ARM_PTIMER_CTL,
598  KVM_REG_ARM_PTIMER_CNT,
599  KVM_REG_ARM_PTIMER_CVAL,
600 };
601 
602 #define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
603 
604 static bool is_timer_reg(u64 index)
605 {
606  switch (index) {
607  case KVM_REG_ARM_TIMER_CTL:
608  case KVM_REG_ARM_TIMER_CNT:
609  case KVM_REG_ARM_TIMER_CVAL:
610  case KVM_REG_ARM_PTIMER_CTL:
611  case KVM_REG_ARM_PTIMER_CNT:
612  case KVM_REG_ARM_PTIMER_CVAL:
613  return true;
614  }
615  return false;
616 }
617 
618 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
619 {
620  for (int i = 0; i < NUM_TIMER_REGS; i++) {
621  if (put_user(timer_reg_list[i], uindices))
622  return -EFAULT;
623  uindices++;
624  }
625 
626  return 0;
627 }
628 
629 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
630 {
631  void __user *uaddr = (void __user *)(long)reg->addr;
632  u64 val;
633  int ret;
634 
635  ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
636  if (ret != 0)
637  return -EFAULT;
638 
639  return kvm_arm_timer_set_reg(vcpu, reg->id, val);
640 }
641 
642 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
643 {
644  void __user *uaddr = (void __user *)(long)reg->addr;
645  u64 val;
646 
647  val = kvm_arm_timer_get_reg(vcpu, reg->id);
648  return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
649 }
650 
651 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
652 {
653  const unsigned int slices = vcpu_sve_slices(vcpu);
654 
655  if (!vcpu_has_sve(vcpu))
656  return 0;
657 
658  /* Policed by KVM_GET_REG_LIST: */
659  WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
660 
661  return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
662  + 1; /* KVM_REG_ARM64_SVE_VLS */
663 }
664 
665 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
666  u64 __user *uindices)
667 {
668  const unsigned int slices = vcpu_sve_slices(vcpu);
669  u64 reg;
670  unsigned int i, n;
671  int num_regs = 0;
672 
673  if (!vcpu_has_sve(vcpu))
674  return 0;
675 
676  /* Policed by KVM_GET_REG_LIST: */
677  WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
678 
679  /*
680  * Enumerate this first, so that userspace can save/restore in
681  * the order reported by KVM_GET_REG_LIST:
682  */
683  reg = KVM_REG_ARM64_SVE_VLS;
684  if (put_user(reg, uindices++))
685  return -EFAULT;
686  ++num_regs;
687 
688  for (i = 0; i < slices; i++) {
689  for (n = 0; n < SVE_NUM_ZREGS; n++) {
690  reg = KVM_REG_ARM64_SVE_ZREG(n, i);
691  if (put_user(reg, uindices++))
692  return -EFAULT;
693  num_regs++;
694  }
695 
696  for (n = 0; n < SVE_NUM_PREGS; n++) {
697  reg = KVM_REG_ARM64_SVE_PREG(n, i);
698  if (put_user(reg, uindices++))
699  return -EFAULT;
700  num_regs++;
701  }
702 
703  reg = KVM_REG_ARM64_SVE_FFR(i);
704  if (put_user(reg, uindices++))
705  return -EFAULT;
706  num_regs++;
707  }
708 
709  return num_regs;
710 }
711 
712 /**
713  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
714  *
715  * This is for all registers.
716  */
717 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
718 {
719  unsigned long res = 0;
720 
721  res += num_core_regs(vcpu);
722  res += num_sve_regs(vcpu);
723  res += kvm_arm_num_sys_reg_descs(vcpu);
724  res += kvm_arm_get_fw_num_regs(vcpu);
725  res += NUM_TIMER_REGS;
726 
727  return res;
728 }
729 
730 /**
731  * kvm_arm_copy_reg_indices - get indices of all registers.
732  *
733  * We do core registers right here, then we append system regs.
734  */
735 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
736 {
737  int ret;
738 
739  ret = copy_core_reg_indices(vcpu, uindices);
740  if (ret < 0)
741  return ret;
742  uindices += ret;
743 
744  ret = copy_sve_reg_indices(vcpu, uindices);
745  if (ret < 0)
746  return ret;
747  uindices += ret;
748 
749  ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
750  if (ret < 0)
751  return ret;
752  uindices += kvm_arm_get_fw_num_regs(vcpu);
753 
754  ret = copy_timer_indices(vcpu, uindices);
755  if (ret < 0)
756  return ret;
757  uindices += NUM_TIMER_REGS;
758 
759  return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
760 }
761 
762 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
763 {
764  /* We currently use nothing arch-specific in upper 32 bits */
765  if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
766  return -EINVAL;
767 
768  switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
769  case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
770  case KVM_REG_ARM_FW:
771  case KVM_REG_ARM_FW_FEAT_BMAP:
772  return kvm_arm_get_fw_reg(vcpu, reg);
773  case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
774  }
775 
776  if (is_timer_reg(reg->id))
777  return get_timer_reg(vcpu, reg);
778 
779  return kvm_arm_sys_reg_get_reg(vcpu, reg);
780 }
781 
782 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
783 {
784  /* We currently use nothing arch-specific in upper 32 bits */
785  if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
786  return -EINVAL;
787 
788  switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
789  case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
790  case KVM_REG_ARM_FW:
791  case KVM_REG_ARM_FW_FEAT_BMAP:
792  return kvm_arm_set_fw_reg(vcpu, reg);
793  case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
794  }
795 
796  if (is_timer_reg(reg->id))
797  return set_timer_reg(vcpu, reg);
798 
799  return kvm_arm_sys_reg_set_reg(vcpu, reg);
800 }
801 
802 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
803  struct kvm_sregs *sregs)
804 {
805  return -EINVAL;
806 }
807 
808 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
809  struct kvm_sregs *sregs)
810 {
811  return -EINVAL;
812 }
813 
814 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
815  struct kvm_vcpu_events *events)
816 {
817  events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
818  events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
819 
820  if (events->exception.serror_pending && events->exception.serror_has_esr)
821  events->exception.serror_esr = vcpu_get_vsesr(vcpu);
822 
823  /*
824  * We never return a pending ext_dabt here because we deliver it to
825  * the virtual CPU directly when setting the event and it's no longer
826  * 'pending' at this point.
827  */
828 
829  return 0;
830 }
831 
832 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
833  struct kvm_vcpu_events *events)
834 {
835  bool serror_pending = events->exception.serror_pending;
836  bool has_esr = events->exception.serror_has_esr;
837  bool ext_dabt_pending = events->exception.ext_dabt_pending;
838 
839  if (serror_pending && has_esr) {
840  if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
841  return -EINVAL;
842 
843  if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
844  kvm_set_sei_esr(vcpu, events->exception.serror_esr);
845  else
846  return -EINVAL;
847  } else if (serror_pending) {
848  kvm_inject_vabt(vcpu);
849  }
850 
851  if (ext_dabt_pending)
852  kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
853 
854  return 0;
855 }
856 
857 u32 __attribute_const__ kvm_target_cpu(void)
858 {
859  unsigned long implementor = read_cpuid_implementor();
860  unsigned long part_number = read_cpuid_part_number();
861 
862  switch (implementor) {
863  case ARM_CPU_IMP_ARM:
864  switch (part_number) {
865  case ARM_CPU_PART_AEM_V8:
866  return KVM_ARM_TARGET_AEM_V8;
867  case ARM_CPU_PART_FOUNDATION:
868  return KVM_ARM_TARGET_FOUNDATION_V8;
869  case ARM_CPU_PART_CORTEX_A53:
870  return KVM_ARM_TARGET_CORTEX_A53;
871  case ARM_CPU_PART_CORTEX_A57:
872  return KVM_ARM_TARGET_CORTEX_A57;
873  }
874  break;
875  case ARM_CPU_IMP_APM:
876  switch (part_number) {
877  case APM_CPU_PART_XGENE:
878  return KVM_ARM_TARGET_XGENE_POTENZA;
879  }
880  break;
881  }
882 
883  /* Return a default generic target */
884  return KVM_ARM_TARGET_GENERIC_V8;
885 }
886 
887 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
888 {
889  return -EINVAL;
890 }
891 
892 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
893 {
894  return -EINVAL;
895 }
896 
897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
898  struct kvm_translation *tr)
899 {
900  return -EINVAL;
901 }
902 
903 /**
904  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
905  * @kvm: pointer to the KVM struct
906  * @kvm_guest_debug: the ioctl data buffer
907  *
908  * This sets up and enables the VM for guest debugging. Userspace
909  * passes in a control flag to enable different debug types and
910  * potentially other architecture specific information in the rest of
911  * the structure.
912  */
913 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
914  struct kvm_guest_debug *dbg)
915 {
916  int ret = 0;
917 
918  trace_kvm_set_guest_debug(vcpu, dbg->control);
919 
920  if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
921  ret = -EINVAL;
922  goto out;
923  }
924 
925  if (dbg->control & KVM_GUESTDBG_ENABLE) {
926  vcpu->guest_debug = dbg->control;
927 
928  /* Hardware assisted Break and Watch points */
929  if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
930  vcpu->arch.external_debug_state = dbg->arch;
931  }
932 
933  } else {
934  /* If not enabled clear all flags */
935  vcpu->guest_debug = 0;
936  vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
937  }
938 
939 out:
940  return ret;
941 }
942 
943 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
944  struct kvm_device_attr *attr)
945 {
946  int ret;
947 
948  switch (attr->group) {
949  case KVM_ARM_VCPU_PMU_V3_CTRL:
950  mutex_lock(&vcpu->kvm->arch.config_lock);
951  ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
952  mutex_unlock(&vcpu->kvm->arch.config_lock);
953  break;
954  case KVM_ARM_VCPU_TIMER_CTRL:
955  ret = kvm_arm_timer_set_attr(vcpu, attr);
956  break;
957  case KVM_ARM_VCPU_PVTIME_CTRL:
958  ret = kvm_arm_pvtime_set_attr(vcpu, attr);
959  break;
960  default:
961  ret = -ENXIO;
962  break;
963  }
964 
965  return ret;
966 }
967 
968 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
969  struct kvm_device_attr *attr)
970 {
971  int ret;
972 
973  switch (attr->group) {
974  case KVM_ARM_VCPU_PMU_V3_CTRL:
975  ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
976  break;
977  case KVM_ARM_VCPU_TIMER_CTRL:
978  ret = kvm_arm_timer_get_attr(vcpu, attr);
979  break;
980  case KVM_ARM_VCPU_PVTIME_CTRL:
981  ret = kvm_arm_pvtime_get_attr(vcpu, attr);
982  break;
983  default:
984  ret = -ENXIO;
985  break;
986  }
987 
988  return ret;
989 }
990 
991 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
992  struct kvm_device_attr *attr)
993 {
994  int ret;
995 
996  switch (attr->group) {
997  case KVM_ARM_VCPU_PMU_V3_CTRL:
998  ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
999  break;
1000  case KVM_ARM_VCPU_TIMER_CTRL:
1001  ret = kvm_arm_timer_has_attr(vcpu, attr);
1002  break;
1003  case KVM_ARM_VCPU_PVTIME_CTRL:
1004  ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1005  break;
1006  default:
1007  ret = -ENXIO;
1008  break;
1009  }
1010 
1011  return ret;
1012 }
1013 
1014 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1015  struct kvm_arm_copy_mte_tags *copy_tags)
1016 {
1017  gpa_t guest_ipa = copy_tags->guest_ipa;
1018  size_t length = copy_tags->length;
1019  void __user *tags = copy_tags->addr;
1020  gpa_t gfn;
1021  bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1022  int ret = 0;
1023 
1024  if (!kvm_has_mte(kvm))
1025  return -EINVAL;
1026 
1027  if (copy_tags->reserved[0] || copy_tags->reserved[1])
1028  return -EINVAL;
1029 
1030  if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1031  return -EINVAL;
1032 
1033  if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1034  return -EINVAL;
1035 
1036  /* Lengths above INT_MAX cannot be represented in the return value */
1037  if (length > INT_MAX)
1038  return -EINVAL;
1039 
1040  gfn = gpa_to_gfn(guest_ipa);
1041 
1042  mutex_lock(&kvm->slots_lock);
1043 
1044  while (length > 0) {
1045  kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1046  void *maddr;
1047  unsigned long num_tags;
1048  struct page *page;
1049 
1050  if (is_error_noslot_pfn(pfn)) {
1051  ret = -EFAULT;
1052  goto out;
1053  }
1054 
1055  page = pfn_to_online_page(pfn);
1056  if (!page) {
1057  /* Reject ZONE_DEVICE memory */
1058  ret = -EFAULT;
1059  goto out;
1060  }
1061  maddr = page_address(page);
1062 
1063  if (!write) {
1064  if (page_mte_tagged(page))
1065  num_tags = mte_copy_tags_to_user(tags, maddr,
1066  MTE_GRANULES_PER_PAGE);
1067  else
1068  /* No tags in memory, so write zeros */
1069  num_tags = MTE_GRANULES_PER_PAGE -
1070  clear_user(tags, MTE_GRANULES_PER_PAGE);
1071  kvm_release_pfn_clean(pfn);
1072  } else {
1073  /*
1074  * Only locking to serialise with a concurrent
1075  * set_pte_at() in the VMM but still overriding the
1076  * tags, hence ignoring the return value.
1077  */
1078  try_page_mte_tagging(page);
1079  num_tags = mte_copy_tags_from_user(maddr, tags,
1080  MTE_GRANULES_PER_PAGE);
1081 
1082  /* uaccess failed, don't leave stale tags */
1083  if (num_tags != MTE_GRANULES_PER_PAGE)
1084  mte_clear_page_tags(maddr);
1085  set_page_mte_tagged(page);
1086 
1087  kvm_release_pfn_dirty(pfn);
1088  }
1089 
1090  if (num_tags != MTE_GRANULES_PER_PAGE) {
1091  ret = -EFAULT;
1092  goto out;
1093  }
1094 
1095  gfn++;
1096  tags += num_tags;
1097  length -= PAGE_SIZE;
1098  }
1099 
1100 out:
1101  mutex_unlock(&kvm->slots_lock);
1102  /* If some data has been copied report the number of bytes copied */
1103  if (length != copy_tags->length)
1104  return copy_tags->length - length;
1105  return ret;
1106 }
int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arch_timer.c:1559
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arch_timer.c:1611
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
Definition: arch_timer.c:1107
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
Definition: arch_timer.c:1048
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arch_timer.c:1638
size_t size
Definition: gen-hyprel.c:133
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
Definition: guest.c:892
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:215
static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: guest.c:665
static void * core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:121
static int sve_reg_to_region(struct sve_state_reg_region *region, struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:417
#define vq_mask(vq)
Definition: guest.c:309
#define SVE_NUM_SLICES
Definition: guest.c:393
static const u64 timer_reg_list[]
Definition: guest.c:593
static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:312
static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:510
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: guest.c:545
#define vq_present(vqs, vq)
Definition: guest.c:310
static bool core_reg_offset_is_vreg(u64 off)
Definition: guest.c:65
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
Definition: guest.c:535
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
Definition: guest.c:651
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: guest.c:991
u32 __attribute_const__ kvm_target_cpu(void)
Definition: guest.c:857
const struct kvm_stats_header kvm_vm_stats_header
Definition: guest.c:36
static u64 core_reg_offset_from_id(u64 id)
Definition: guest.c:71
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: guest.c:735
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, struct kvm_arm_copy_mte_tags *copy_tags)
Definition: guest.c:1014
#define NUM_TIMER_REGS
Definition: guest.c:602
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
Definition: guest.c:717
static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:484
#define vcpu_sve_slices(vcpu)
Definition: guest.c:404
#define vq_word(vq)
Definition: guest.c:308
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)
Definition: guest.c:814
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
Definition: guest.c:887
#define KVM_SVE_PREG_SIZE
Definition: guest.c:396
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:782
static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:642
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: guest.c:943
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
Definition: guest.c:76
const struct _kvm_stats_desc kvm_vcpu_stats_desc[]
Definition: guest.c:45
static bool is_timer_reg(u64 index)
Definition: guest.c:604
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
Definition: guest.c:897
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: guest.c:968
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)
Definition: guest.c:832
const struct kvm_stats_header kvm_vcpu_stats_header
Definition: guest.c:56
#define SVE_REG_ID_MASK
Definition: guest.c:390
#define SVE_REG_ID_SHIFT
Definition: guest.c:384
static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: guest.c:618
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
Definition: guest.c:802
static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:629
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:762
const struct _kvm_stats_desc kvm_vm_stats_desc[]
Definition: guest.c:32
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
Definition: guest.c:808
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:186
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
Definition: guest.c:913
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
Definition: guest.c:588
#define KVM_SVE_ZREG_SIZE
Definition: guest.c:395
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
Definition: guest.c:540
static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:336
#define SVE_REG_SLICE_MASK
Definition: guest.c:387
int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: hypercalls.c:551
int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: hypercalls.c:476
int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
Definition: hypercalls.c:408
int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: hypercalls.c:413
void kvm_inject_vabt(struct kvm_vcpu *vcpu)
Definition: inject_fault.c:251
void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
Definition: inject_fault.c:166
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 esr)
Definition: inject_fault.c:233
void kvm_release_pfn_dirty(kvm_pfn_t pfn)
Definition: kvm_main.c:3265
kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, bool *writable)
Definition: kvm_main.c:3063
void kvm_release_pfn_clean(kvm_pfn_t pfn)
Definition: kvm_main.c:3241
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: pmu-emul.c:1107
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: pmu-emul.c:1083
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: pmu-emul.c:980
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: pvtime.c:124
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: pvtime.c:75
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: pvtime.c:107
unsigned int __ro_after_init kvm_sve_max_vl
Definition: reset.c:48
unsigned int koffset
Definition: guest.c:408
unsigned int upad
Definition: guest.c:410
unsigned int klen
Definition: guest.c:409
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3847
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: sys_regs.c:3854
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: sys_regs.c:3749
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: sys_regs.c:3705