KVM
sys_regs.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  * Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 
36 #include "trace.h"
37 
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43 
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46  u64 val);
47 
48 static bool bad_trap(struct kvm_vcpu *vcpu,
49  struct sys_reg_params *params,
50  const struct sys_reg_desc *r,
51  const char *msg)
52 {
53  WARN_ONCE(1, "Unexpected %s\n", msg);
54  print_sys_reg_instr(params);
56  return false;
57 }
58 
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60  struct sys_reg_params *params,
61  const struct sys_reg_desc *r)
62 {
63  return bad_trap(vcpu, params, r,
64  "sys_reg read to write-only register");
65 }
66 
67 static bool write_to_read_only(struct kvm_vcpu *vcpu,
68  struct sys_reg_params *params,
69  const struct sys_reg_desc *r)
70 {
71  return bad_trap(vcpu, params, r,
72  "sys_reg write to read-only register");
73 }
74 
75 #define PURE_EL2_SYSREG(el2) \
76  case el2: { \
77  *el1r = el2; \
78  return true; \
79  }
80 
81 #define MAPPED_EL2_SYSREG(el2, el1, fn) \
82  case el2: { \
83  *xlate = fn; \
84  *el1r = el1; \
85  return true; \
86  }
87 
88 static bool get_el2_to_el1_mapping(unsigned int reg,
89  unsigned int *el1r, u64 (**xlate)(u64))
90 {
91  switch (reg) {
92  PURE_EL2_SYSREG( VPIDR_EL2 );
93  PURE_EL2_SYSREG( VMPIDR_EL2 );
94  PURE_EL2_SYSREG( ACTLR_EL2 );
95  PURE_EL2_SYSREG( HCR_EL2 );
96  PURE_EL2_SYSREG( MDCR_EL2 );
97  PURE_EL2_SYSREG( HSTR_EL2 );
98  PURE_EL2_SYSREG( HACR_EL2 );
99  PURE_EL2_SYSREG( VTTBR_EL2 );
100  PURE_EL2_SYSREG( VTCR_EL2 );
101  PURE_EL2_SYSREG( RVBAR_EL2 );
102  PURE_EL2_SYSREG( TPIDR_EL2 );
103  PURE_EL2_SYSREG( HPFAR_EL2 );
104  PURE_EL2_SYSREG( CNTHCTL_EL2 );
105  MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1,
106  translate_sctlr_el2_to_sctlr_el1 );
107  MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1,
108  translate_cptr_el2_to_cpacr_el1 );
109  MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1,
110  translate_ttbr0_el2_to_ttbr0_el1 );
111  MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL );
112  MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1,
113  translate_tcr_el2_to_tcr_el1 );
114  MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL );
115  MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL );
116  MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL );
117  MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL );
118  MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL );
119  MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL );
120  MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL );
121  MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL );
122  MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL );
123  default:
124  return false;
125  }
126 }
127 
128 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
129 {
130  u64 val = 0x8badf00d8badf00d;
131  u64 (*xlate)(u64) = NULL;
132  unsigned int el1r;
133 
134  if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
135  goto memory_read;
136 
137  if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
138  if (!is_hyp_ctxt(vcpu))
139  goto memory_read;
140 
141  /*
142  * If this register does not have an EL1 counterpart,
143  * then read the stored EL2 version.
144  */
145  if (reg == el1r)
146  goto memory_read;
147 
148  /*
149  * If we have a non-VHE guest and that the sysreg
150  * requires translation to be used at EL1, use the
151  * in-memory copy instead.
152  */
153  if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
154  goto memory_read;
155 
156  /* Get the current version of the EL1 counterpart. */
157  WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
158  return val;
159  }
160 
161  /* EL1 register can't be on the CPU if the guest is in vEL2. */
162  if (unlikely(is_hyp_ctxt(vcpu)))
163  goto memory_read;
164 
165  if (__vcpu_read_sys_reg_from_cpu(reg, &val))
166  return val;
167 
168 memory_read:
169  return __vcpu_sys_reg(vcpu, reg);
170 }
171 
172 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
173 {
174  u64 (*xlate)(u64) = NULL;
175  unsigned int el1r;
176 
177  if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
178  goto memory_write;
179 
180  if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
181  if (!is_hyp_ctxt(vcpu))
182  goto memory_write;
183 
184  /*
185  * Always store a copy of the write to memory to avoid having
186  * to reverse-translate virtual EL2 system registers for a
187  * non-VHE guest hypervisor.
188  */
189  __vcpu_sys_reg(vcpu, reg) = val;
190 
191  /* No EL1 counterpart? We're done here.? */
192  if (reg == el1r)
193  return;
194 
195  if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
196  val = xlate(val);
197 
198  /* Redirect this to the EL1 version of the register. */
199  WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
200  return;
201  }
202 
203  /* EL1 register can't be on the CPU if the guest is in vEL2. */
204  if (unlikely(is_hyp_ctxt(vcpu)))
205  goto memory_write;
206 
207  if (__vcpu_write_sys_reg_to_cpu(val, reg))
208  return;
209 
210 memory_write:
211  __vcpu_sys_reg(vcpu, reg) = val;
212 }
213 
214 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
215 #define CSSELR_MAX 14
216 
217 /*
218  * Returns the minimum line size for the selected cache, expressed as
219  * Log2(bytes).
220  */
221 static u8 get_min_cache_line_size(bool icache)
222 {
223  u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
224  u8 field;
225 
226  if (icache)
227  field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
228  else
229  field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
230 
231  /*
232  * Cache line size is represented as Log2(words) in CTR_EL0.
233  * Log2(bytes) can be derived with the following:
234  *
235  * Log2(words) + 2 = Log2(bytes / 4) + 2
236  * = Log2(bytes) - 2 + 2
237  * = Log2(bytes)
238  */
239  return field + 2;
240 }
241 
242 /* Which cache CCSIDR represents depends on CSSELR value. */
243 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
244 {
245  u8 line_size;
246 
247  if (vcpu->arch.ccsidr)
248  return vcpu->arch.ccsidr[csselr];
249 
250  line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
251 
252  /*
253  * Fabricate a CCSIDR value as the overriding value does not exist.
254  * The real CCSIDR value will not be used as it can vary by the
255  * physical CPU which the vcpu currently resides in.
256  *
257  * The line size is determined with get_min_cache_line_size(), which
258  * should be valid for all CPUs even if they have different cache
259  * configuration.
260  *
261  * The associativity bits are cleared, meaning the geometry of all data
262  * and unified caches (which are guaranteed to be PIPT and thus
263  * non-aliasing) are 1 set and 1 way.
264  * Guests should not be doing cache operations by set/way at all, and
265  * for this reason, we trap them and attempt to infer the intent, so
266  * that we can flush the entire guest's address space at the appropriate
267  * time. The exposed geometry minimizes the number of the traps.
268  * [If guests should attempt to infer aliasing properties from the
269  * geometry (which is not permitted by the architecture), they would
270  * only do so for virtually indexed caches.]
271  *
272  * We don't check if the cache level exists as it is allowed to return
273  * an UNKNOWN value if not.
274  */
275  return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
276 }
277 
278 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
279 {
280  u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
281  u32 *ccsidr = vcpu->arch.ccsidr;
282  u32 i;
283 
284  if ((val & CCSIDR_EL1_RES0) ||
285  line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
286  return -EINVAL;
287 
288  if (!ccsidr) {
289  if (val == get_ccsidr(vcpu, csselr))
290  return 0;
291 
292  ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
293  if (!ccsidr)
294  return -ENOMEM;
295 
296  for (i = 0; i < CSSELR_MAX; i++)
297  ccsidr[i] = get_ccsidr(vcpu, i);
298 
299  vcpu->arch.ccsidr = ccsidr;
300  }
301 
302  ccsidr[csselr] = val;
303 
304  return 0;
305 }
306 
307 static bool access_rw(struct kvm_vcpu *vcpu,
308  struct sys_reg_params *p,
309  const struct sys_reg_desc *r)
310 {
311  if (p->is_write)
312  vcpu_write_sys_reg(vcpu, p->regval, r->reg);
313  else
314  p->regval = vcpu_read_sys_reg(vcpu, r->reg);
315 
316  return true;
317 }
318 
319 /*
320  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
321  */
322 static bool access_dcsw(struct kvm_vcpu *vcpu,
323  struct sys_reg_params *p,
324  const struct sys_reg_desc *r)
325 {
326  if (!p->is_write)
327  return read_from_write_only(vcpu, p, r);
328 
329  /*
330  * Only track S/W ops if we don't have FWB. It still indicates
331  * that the guest is a bit broken (S/W operations should only
332  * be done by firmware, knowing that there is only a single
333  * CPU left in the system, and certainly not from non-secure
334  * software).
335  */
336  if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
337  kvm_set_way_flush(vcpu);
338 
339  return true;
340 }
341 
342 static bool access_dcgsw(struct kvm_vcpu *vcpu,
343  struct sys_reg_params *p,
344  const struct sys_reg_desc *r)
345 {
346  if (!kvm_has_mte(vcpu->kvm)) {
347  kvm_inject_undefined(vcpu);
348  return false;
349  }
350 
351  /* Treat MTE S/W ops as we treat the classic ones: with contempt */
352  return access_dcsw(vcpu, p, r);
353 }
354 
355 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
356 {
357  switch (r->aarch32_map) {
358  case AA32_LO:
359  *mask = GENMASK_ULL(31, 0);
360  *shift = 0;
361  break;
362  case AA32_HI:
363  *mask = GENMASK_ULL(63, 32);
364  *shift = 32;
365  break;
366  default:
367  *mask = GENMASK_ULL(63, 0);
368  *shift = 0;
369  break;
370  }
371 }
372 
373 /*
374  * Generic accessor for VM registers. Only called as long as HCR_TVM
375  * is set. If the guest enables the MMU, we stop trapping the VM
376  * sys_regs and leave it in complete control of the caches.
377  */
378 static bool access_vm_reg(struct kvm_vcpu *vcpu,
379  struct sys_reg_params *p,
380  const struct sys_reg_desc *r)
381 {
382  bool was_enabled = vcpu_has_cache_enabled(vcpu);
383  u64 val, mask, shift;
384 
385  BUG_ON(!p->is_write);
386 
387  get_access_mask(r, &mask, &shift);
388 
389  if (~mask) {
390  val = vcpu_read_sys_reg(vcpu, r->reg);
391  val &= ~mask;
392  } else {
393  val = 0;
394  }
395 
396  val |= (p->regval & (mask >> shift)) << shift;
397  vcpu_write_sys_reg(vcpu, val, r->reg);
398 
399  kvm_toggle_cache(vcpu, was_enabled);
400  return true;
401 }
402 
403 static bool access_actlr(struct kvm_vcpu *vcpu,
404  struct sys_reg_params *p,
405  const struct sys_reg_desc *r)
406 {
407  u64 mask, shift;
408 
409  if (p->is_write)
410  return ignore_write(vcpu, p);
411 
412  get_access_mask(r, &mask, &shift);
413  p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
414 
415  return true;
416 }
417 
418 /*
419  * Trap handler for the GICv3 SGI generation system register.
420  * Forward the request to the VGIC emulation.
421  * The cp15_64 code makes sure this automatically works
422  * for both AArch64 and AArch32 accesses.
423  */
424 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
425  struct sys_reg_params *p,
426  const struct sys_reg_desc *r)
427 {
428  bool g1;
429 
430  if (!p->is_write)
431  return read_from_write_only(vcpu, p, r);
432 
433  /*
434  * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
435  * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
436  * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
437  * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
438  * group.
439  */
440  if (p->Op0 == 0) { /* AArch32 */
441  switch (p->Op1) {
442  default: /* Keep GCC quiet */
443  case 0: /* ICC_SGI1R */
444  g1 = true;
445  break;
446  case 1: /* ICC_ASGI1R */
447  case 2: /* ICC_SGI0R */
448  g1 = false;
449  break;
450  }
451  } else { /* AArch64 */
452  switch (p->Op2) {
453  default: /* Keep GCC quiet */
454  case 5: /* ICC_SGI1R_EL1 */
455  g1 = true;
456  break;
457  case 6: /* ICC_ASGI1R_EL1 */
458  case 7: /* ICC_SGI0R_EL1 */
459  g1 = false;
460  break;
461  }
462  }
463 
464  vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
465 
466  return true;
467 }
468 
469 static bool access_gic_sre(struct kvm_vcpu *vcpu,
470  struct sys_reg_params *p,
471  const struct sys_reg_desc *r)
472 {
473  if (p->is_write)
474  return ignore_write(vcpu, p);
475 
476  p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
477  return true;
478 }
479 
480 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
481  struct sys_reg_params *p,
482  const struct sys_reg_desc *r)
483 {
484  if (p->is_write)
485  return ignore_write(vcpu, p);
486  else
487  return read_zero(vcpu, p);
488 }
489 
490 static bool trap_undef(struct kvm_vcpu *vcpu,
491  struct sys_reg_params *p,
492  const struct sys_reg_desc *r)
493 {
494  kvm_inject_undefined(vcpu);
495  return false;
496 }
497 
498 /*
499  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
500  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
501  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
502  * treat it separately.
503  */
504 static bool trap_loregion(struct kvm_vcpu *vcpu,
505  struct sys_reg_params *p,
506  const struct sys_reg_desc *r)
507 {
508  u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
509  u32 sr = reg_to_encoding(r);
510 
511  if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
512  kvm_inject_undefined(vcpu);
513  return false;
514  }
515 
516  if (p->is_write && sr == SYS_LORID_EL1)
517  return write_to_read_only(vcpu, p, r);
518 
519  return trap_raz_wi(vcpu, p, r);
520 }
521 
522 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523  struct sys_reg_params *p,
524  const struct sys_reg_desc *r)
525 {
526  u64 oslsr;
527 
528  if (!p->is_write)
529  return read_from_write_only(vcpu, p, r);
530 
531  /* Forward the OSLK bit to OSLSR */
532  oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533  if (p->regval & OSLAR_EL1_OSLK)
534  oslsr |= OSLSR_EL1_OSLK;
535 
536  __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537  return true;
538 }
539 
540 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541  struct sys_reg_params *p,
542  const struct sys_reg_desc *r)
543 {
544  if (p->is_write)
545  return write_to_read_only(vcpu, p, r);
546 
547  p->regval = __vcpu_sys_reg(vcpu, r->reg);
548  return true;
549 }
550 
551 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552  u64 val)
553 {
554  /*
555  * The only modifiable bit is the OSLK bit. Refuse the write if
556  * userspace attempts to change any other bit in the register.
557  */
558  if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559  return -EINVAL;
560 
561  __vcpu_sys_reg(vcpu, rd->reg) = val;
562  return 0;
563 }
564 
565 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566  struct sys_reg_params *p,
567  const struct sys_reg_desc *r)
568 {
569  if (p->is_write) {
570  return ignore_write(vcpu, p);
571  } else {
572  p->regval = read_sysreg(dbgauthstatus_el1);
573  return true;
574  }
575 }
576 
577 /*
578  * We want to avoid world-switching all the DBG registers all the
579  * time:
580  *
581  * - If we've touched any debug register, it is likely that we're
582  * going to touch more of them. It then makes sense to disable the
583  * traps and start doing the save/restore dance
584  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585  * then mandatory to save/restore the registers, as the guest
586  * depends on them.
587  *
588  * For this, we use a DIRTY bit, indicating the guest has modified the
589  * debug registers, used as follow:
590  *
591  * On guest entry:
592  * - If the dirty bit is set (because we're coming back from trapping),
593  * disable the traps, save host registers, restore guest registers.
594  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595  * set the dirty bit, disable the traps, save host registers,
596  * restore guest registers.
597  * - Otherwise, enable the traps
598  *
599  * On guest exit:
600  * - If the dirty bit is set, save guest registers, restore host
601  * registers and clear the dirty bit. This ensure that the host can
602  * now use the debug registers.
603  */
604 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605  struct sys_reg_params *p,
606  const struct sys_reg_desc *r)
607 {
608  access_rw(vcpu, p, r);
609  if (p->is_write)
610  vcpu_set_flag(vcpu, DEBUG_DIRTY);
611 
612  trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
613 
614  return true;
615 }
616 
617 /*
618  * reg_to_dbg/dbg_to_reg
619  *
620  * A 32 bit write to a debug register leave top bits alone
621  * A 32 bit read from a debug register only returns the bottom bits
622  *
623  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624  * switches between host and guest values in future.
625  */
626 static void reg_to_dbg(struct kvm_vcpu *vcpu,
627  struct sys_reg_params *p,
628  const struct sys_reg_desc *rd,
629  u64 *dbg_reg)
630 {
631  u64 mask, shift, val;
632 
633  get_access_mask(rd, &mask, &shift);
634 
635  val = *dbg_reg;
636  val &= ~mask;
637  val |= (p->regval & (mask >> shift)) << shift;
638  *dbg_reg = val;
639 
640  vcpu_set_flag(vcpu, DEBUG_DIRTY);
641 }
642 
643 static void dbg_to_reg(struct kvm_vcpu *vcpu,
644  struct sys_reg_params *p,
645  const struct sys_reg_desc *rd,
646  u64 *dbg_reg)
647 {
648  u64 mask, shift;
649 
650  get_access_mask(rd, &mask, &shift);
651  p->regval = (*dbg_reg & mask) >> shift;
652 }
653 
654 static bool trap_bvr(struct kvm_vcpu *vcpu,
655  struct sys_reg_params *p,
656  const struct sys_reg_desc *rd)
657 {
658  u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659 
660  if (p->is_write)
661  reg_to_dbg(vcpu, p, rd, dbg_reg);
662  else
663  dbg_to_reg(vcpu, p, rd, dbg_reg);
664 
665  trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
666 
667  return true;
668 }
669 
670 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671  u64 val)
672 {
673  vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674  return 0;
675 }
676 
677 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678  u64 *val)
679 {
680  *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681  return 0;
682 }
683 
684 static u64 reset_bvr(struct kvm_vcpu *vcpu,
685  const struct sys_reg_desc *rd)
686 {
687  vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688  return rd->val;
689 }
690 
691 static bool trap_bcr(struct kvm_vcpu *vcpu,
692  struct sys_reg_params *p,
693  const struct sys_reg_desc *rd)
694 {
695  u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696 
697  if (p->is_write)
698  reg_to_dbg(vcpu, p, rd, dbg_reg);
699  else
700  dbg_to_reg(vcpu, p, rd, dbg_reg);
701 
702  trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
703 
704  return true;
705 }
706 
707 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708  u64 val)
709 {
710  vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711  return 0;
712 }
713 
714 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715  u64 *val)
716 {
717  *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718  return 0;
719 }
720 
721 static u64 reset_bcr(struct kvm_vcpu *vcpu,
722  const struct sys_reg_desc *rd)
723 {
724  vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725  return rd->val;
726 }
727 
728 static bool trap_wvr(struct kvm_vcpu *vcpu,
729  struct sys_reg_params *p,
730  const struct sys_reg_desc *rd)
731 {
732  u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733 
734  if (p->is_write)
735  reg_to_dbg(vcpu, p, rd, dbg_reg);
736  else
737  dbg_to_reg(vcpu, p, rd, dbg_reg);
738 
739  trace_trap_reg(__func__, rd->CRm, p->is_write,
740  vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741 
742  return true;
743 }
744 
745 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746  u64 val)
747 {
748  vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749  return 0;
750 }
751 
752 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753  u64 *val)
754 {
755  *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756  return 0;
757 }
758 
759 static u64 reset_wvr(struct kvm_vcpu *vcpu,
760  const struct sys_reg_desc *rd)
761 {
762  vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763  return rd->val;
764 }
765 
766 static bool trap_wcr(struct kvm_vcpu *vcpu,
767  struct sys_reg_params *p,
768  const struct sys_reg_desc *rd)
769 {
770  u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771 
772  if (p->is_write)
773  reg_to_dbg(vcpu, p, rd, dbg_reg);
774  else
775  dbg_to_reg(vcpu, p, rd, dbg_reg);
776 
777  trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
778 
779  return true;
780 }
781 
782 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783  u64 val)
784 {
785  vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786  return 0;
787 }
788 
789 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790  u64 *val)
791 {
792  *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793  return 0;
794 }
795 
796 static u64 reset_wcr(struct kvm_vcpu *vcpu,
797  const struct sys_reg_desc *rd)
798 {
799  vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800  return rd->val;
801 }
802 
803 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804 {
805  u64 amair = read_sysreg(amair_el1);
806  vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807  return amair;
808 }
809 
810 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812  u64 actlr = read_sysreg(actlr_el1);
813  vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814  return actlr;
815 }
816 
817 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819  u64 mpidr;
820 
821  /*
822  * Map the vcpu_id into the first three affinity level fields of
823  * the MPIDR. We limit the number of VCPUs in level 0 due to a
824  * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825  * of the GICv3 to be able to address each CPU directly when
826  * sending IPIs.
827  */
828  mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829  mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830  mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831  mpidr |= (1ULL << 31);
832  vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833 
834  return mpidr;
835 }
836 
837 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838  const struct sys_reg_desc *r)
839 {
840  if (kvm_vcpu_has_pmu(vcpu))
841  return 0;
842 
843  return REG_HIDDEN;
844 }
845 
846 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847 {
848  u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849  u8 n = vcpu->kvm->arch.pmcr_n;
850 
851  if (n)
852  mask |= GENMASK(n - 1, 0);
853 
854  reset_unknown(vcpu, r);
855  __vcpu_sys_reg(vcpu, r->reg) &= mask;
856 
857  return __vcpu_sys_reg(vcpu, r->reg);
858 }
859 
860 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861 {
862  reset_unknown(vcpu, r);
863  __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864 
865  return __vcpu_sys_reg(vcpu, r->reg);
866 }
867 
868 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869 {
870  /* This thing will UNDEF, who cares about the reset value? */
871  if (!kvm_vcpu_has_pmu(vcpu))
872  return 0;
873 
874  reset_unknown(vcpu, r);
875  __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876 
877  return __vcpu_sys_reg(vcpu, r->reg);
878 }
879 
880 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881 {
882  reset_unknown(vcpu, r);
883  __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884 
885  return __vcpu_sys_reg(vcpu, r->reg);
886 }
887 
888 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889 {
890  u64 pmcr = 0;
891 
892  if (!kvm_supports_32bit_el0())
893  pmcr |= ARMV8_PMU_PMCR_LC;
894 
895  /*
896  * The value of PMCR.N field is included when the
897  * vCPU register is read via kvm_vcpu_read_pmcr().
898  */
899  __vcpu_sys_reg(vcpu, r->reg) = pmcr;
900 
901  return __vcpu_sys_reg(vcpu, r->reg);
902 }
903 
904 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905 {
906  u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907  bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908 
909  if (!enabled)
910  kvm_inject_undefined(vcpu);
911 
912  return !enabled;
913 }
914 
915 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916 {
917  return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918 }
919 
920 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921 {
922  return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923 }
924 
925 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926 {
927  return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928 }
929 
930 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931 {
932  return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933 }
934 
935 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936  const struct sys_reg_desc *r)
937 {
938  u64 val;
939 
940  if (pmu_access_el0_disabled(vcpu))
941  return false;
942 
943  if (p->is_write) {
944  /*
945  * Only update writeable bits of PMCR (continuing into
946  * kvm_pmu_handle_pmcr() as well)
947  */
948  val = kvm_vcpu_read_pmcr(vcpu);
949  val &= ~ARMV8_PMU_PMCR_MASK;
950  val |= p->regval & ARMV8_PMU_PMCR_MASK;
951  if (!kvm_supports_32bit_el0())
952  val |= ARMV8_PMU_PMCR_LC;
953  kvm_pmu_handle_pmcr(vcpu, val);
954  } else {
955  /* PMCR.P & PMCR.C are RAZ */
956  val = kvm_vcpu_read_pmcr(vcpu)
957  & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958  p->regval = val;
959  }
960 
961  return true;
962 }
963 
964 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965  const struct sys_reg_desc *r)
966 {
968  return false;
969 
970  if (p->is_write)
971  __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972  else
973  /* return PMSELR.SEL field */
974  p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975  & ARMV8_PMU_COUNTER_MASK;
976 
977  return true;
978 }
979 
980 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981  const struct sys_reg_desc *r)
982 {
983  u64 pmceid, mask, shift;
984 
985  BUG_ON(p->is_write);
986 
987  if (pmu_access_el0_disabled(vcpu))
988  return false;
989 
990  get_access_mask(r, &mask, &shift);
991 
992  pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993  pmceid &= mask;
994  pmceid >>= shift;
995 
996  p->regval = pmceid;
997 
998  return true;
999 }
1000 
1001 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002 {
1003  u64 pmcr, val;
1004 
1005  pmcr = kvm_vcpu_read_pmcr(vcpu);
1006  val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007  if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008  kvm_inject_undefined(vcpu);
1009  return false;
1010  }
1011 
1012  return true;
1013 }
1014 
1015 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016  u64 *val)
1017 {
1018  u64 idx;
1019 
1020  if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021  /* PMCCNTR_EL0 */
1022  idx = ARMV8_PMU_CYCLE_IDX;
1023  else
1024  /* PMEVCNTRn_EL0 */
1025  idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026 
1027  *val = kvm_pmu_get_counter_value(vcpu, idx);
1028  return 0;
1029 }
1030 
1031 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032  struct sys_reg_params *p,
1033  const struct sys_reg_desc *r)
1034 {
1035  u64 idx = ~0UL;
1036 
1037  if (r->CRn == 9 && r->CRm == 13) {
1038  if (r->Op2 == 2) {
1039  /* PMXEVCNTR_EL0 */
1041  return false;
1042 
1043  idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044  & ARMV8_PMU_COUNTER_MASK;
1045  } else if (r->Op2 == 0) {
1046  /* PMCCNTR_EL0 */
1048  return false;
1049 
1050  idx = ARMV8_PMU_CYCLE_IDX;
1051  }
1052  } else if (r->CRn == 0 && r->CRm == 9) {
1053  /* PMCCNTR */
1055  return false;
1056 
1057  idx = ARMV8_PMU_CYCLE_IDX;
1058  } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059  /* PMEVCNTRn_EL0 */
1061  return false;
1062 
1063  idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064  }
1065 
1066  /* Catch any decoding mistake */
1067  WARN_ON(idx == ~0UL);
1068 
1069  if (!pmu_counter_idx_valid(vcpu, idx))
1070  return false;
1071 
1072  if (p->is_write) {
1073  if (pmu_access_el0_disabled(vcpu))
1074  return false;
1075 
1076  kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077  } else {
1078  p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079  }
1080 
1081  return true;
1082 }
1083 
1084 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085  const struct sys_reg_desc *r)
1086 {
1087  u64 idx, reg;
1088 
1089  if (pmu_access_el0_disabled(vcpu))
1090  return false;
1091 
1092  if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093  /* PMXEVTYPER_EL0 */
1094  idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095  reg = PMEVTYPER0_EL0 + idx;
1096  } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097  idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098  if (idx == ARMV8_PMU_CYCLE_IDX)
1099  reg = PMCCFILTR_EL0;
1100  else
1101  /* PMEVTYPERn_EL0 */
1102  reg = PMEVTYPER0_EL0 + idx;
1103  } else {
1104  BUG();
1105  }
1106 
1107  if (!pmu_counter_idx_valid(vcpu, idx))
1108  return false;
1109 
1110  if (p->is_write) {
1111  kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1113  } else {
1114  p->regval = __vcpu_sys_reg(vcpu, reg);
1115  }
1116 
1117  return true;
1118 }
1119 
1120 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121 {
1122  bool set;
1123 
1124  val &= kvm_pmu_valid_counter_mask(vcpu);
1125 
1126  switch (r->reg) {
1127  case PMOVSSET_EL0:
1128  /* CRm[1] being set indicates a SET register, and CLR otherwise */
1129  set = r->CRm & 2;
1130  break;
1131  default:
1132  /* Op2[0] being set indicates a SET register, and CLR otherwise */
1133  set = r->Op2 & 1;
1134  break;
1135  }
1136 
1137  if (set)
1138  __vcpu_sys_reg(vcpu, r->reg) |= val;
1139  else
1140  __vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141 
1142  return 0;
1143 }
1144 
1145 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146 {
1147  u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148 
1149  *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150  return 0;
1151 }
1152 
1153 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154  const struct sys_reg_desc *r)
1155 {
1156  u64 val, mask;
1157 
1158  if (pmu_access_el0_disabled(vcpu))
1159  return false;
1160 
1161  mask = kvm_pmu_valid_counter_mask(vcpu);
1162  if (p->is_write) {
1163  val = p->regval & mask;
1164  if (r->Op2 & 0x1) {
1165  /* accessing PMCNTENSET_EL0 */
1166  __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167  kvm_pmu_enable_counter_mask(vcpu, val);
1169  } else {
1170  /* accessing PMCNTENCLR_EL0 */
1171  __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172  kvm_pmu_disable_counter_mask(vcpu, val);
1173  }
1174  } else {
1175  p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176  }
1177 
1178  return true;
1179 }
1180 
1181 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182  const struct sys_reg_desc *r)
1183 {
1184  u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185 
1186  if (check_pmu_access_disabled(vcpu, 0))
1187  return false;
1188 
1189  if (p->is_write) {
1190  u64 val = p->regval & mask;
1191 
1192  if (r->Op2 & 0x1)
1193  /* accessing PMINTENSET_EL1 */
1194  __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195  else
1196  /* accessing PMINTENCLR_EL1 */
1197  __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198  } else {
1199  p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200  }
1201 
1202  return true;
1203 }
1204 
1205 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206  const struct sys_reg_desc *r)
1207 {
1208  u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209 
1210  if (pmu_access_el0_disabled(vcpu))
1211  return false;
1212 
1213  if (p->is_write) {
1214  if (r->CRm & 0x2)
1215  /* accessing PMOVSSET_EL0 */
1216  __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217  else
1218  /* accessing PMOVSCLR_EL0 */
1219  __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220  } else {
1221  p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222  }
1223 
1224  return true;
1225 }
1226 
1227 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228  const struct sys_reg_desc *r)
1229 {
1230  u64 mask;
1231 
1232  if (!p->is_write)
1233  return read_from_write_only(vcpu, p, r);
1234 
1235  if (pmu_write_swinc_el0_disabled(vcpu))
1236  return false;
1237 
1238  mask = kvm_pmu_valid_counter_mask(vcpu);
1239  kvm_pmu_software_increment(vcpu, p->regval & mask);
1240  return true;
1241 }
1242 
1243 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244  const struct sys_reg_desc *r)
1245 {
1246  if (p->is_write) {
1247  if (!vcpu_mode_priv(vcpu)) {
1248  kvm_inject_undefined(vcpu);
1249  return false;
1250  }
1251 
1252  __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253  p->regval & ARMV8_PMU_USERENR_MASK;
1254  } else {
1255  p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256  & ARMV8_PMU_USERENR_MASK;
1257  }
1258 
1259  return true;
1260 }
1261 
1262 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263  u64 *val)
1264 {
1265  *val = kvm_vcpu_read_pmcr(vcpu);
1266  return 0;
1267 }
1268 
1269 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270  u64 val)
1271 {
1272  u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273  struct kvm *kvm = vcpu->kvm;
1274 
1275  mutex_lock(&kvm->arch.config_lock);
1276 
1277  /*
1278  * The vCPU can't have more counters than the PMU hardware
1279  * implements. Ignore this error to maintain compatibility
1280  * with the existing KVM behavior.
1281  */
1282  if (!kvm_vm_has_ran_once(kvm) &&
1283  new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284  kvm->arch.pmcr_n = new_n;
1285 
1286  mutex_unlock(&kvm->arch.config_lock);
1287 
1288  /*
1289  * Ignore writes to RES0 bits, read only bits that are cleared on
1290  * vCPU reset, and writable bits that KVM doesn't support yet.
1291  * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292  * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293  * But, we leave the bit as it is here, as the vCPU's PMUver might
1294  * be changed later (NOTE: the bit will be cleared on first vCPU run
1295  * if necessary).
1296  */
1297  val &= ARMV8_PMU_PMCR_MASK;
1298 
1299  /* The LC bit is RES1 when AArch32 is not supported */
1300  if (!kvm_supports_32bit_el0())
1301  val |= ARMV8_PMU_PMCR_LC;
1302 
1303  __vcpu_sys_reg(vcpu, r->reg) = val;
1304  return 0;
1305 }
1306 
1307 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1309  { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1310  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
1311  { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1312  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
1313  { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1314  trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
1315  { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1316  trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
1317 
1318 #define PMU_SYS_REG(name) \
1319  SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
1320  .visibility = pmu_visibility
1321 
1322 /* Macro to expand the PMEVCNTRn_EL0 register */
1323 #define PMU_PMEVCNTR_EL0(n) \
1324  { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
1325  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
1326  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327 
1328 /* Macro to expand the PMEVTYPERn_EL0 register */
1329 #define PMU_PMEVTYPER_EL0(n) \
1330  { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
1331  .reset = reset_pmevtyper, \
1332  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333 
1334 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335  const struct sys_reg_desc *r)
1336 {
1337  kvm_inject_undefined(vcpu);
1338 
1339  return false;
1340 }
1341 
1342 /* Macro to expand the AMU counter and type registers*/
1343 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347 
1348 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349  const struct sys_reg_desc *rd)
1350 {
1351  return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352 }
1353 
1354 /*
1355  * If we land here on a PtrAuth access, that is because we didn't
1356  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357  * way this happens is when the guest does not have PtrAuth support
1358  * enabled.
1359  */
1360 #define __PTRAUTH_KEY(k) \
1361  { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1362  .visibility = ptrauth_visibility}
1363 
1364 #define PTRAUTH_KEY(k) \
1365  __PTRAUTH_KEY(k ## KEYLO_EL1), \
1366  __PTRAUTH_KEY(k ## KEYHI_EL1)
1367 
1368 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369  struct sys_reg_params *p,
1370  const struct sys_reg_desc *r)
1371 {
1372  enum kvm_arch_timers tmr;
1373  enum kvm_arch_timer_regs treg;
1374  u64 reg = reg_to_encoding(r);
1375 
1376  switch (reg) {
1377  case SYS_CNTP_TVAL_EL0:
1378  case SYS_AARCH32_CNTP_TVAL:
1379  tmr = TIMER_PTIMER;
1380  treg = TIMER_REG_TVAL;
1381  break;
1382  case SYS_CNTP_CTL_EL0:
1383  case SYS_AARCH32_CNTP_CTL:
1384  tmr = TIMER_PTIMER;
1385  treg = TIMER_REG_CTL;
1386  break;
1387  case SYS_CNTP_CVAL_EL0:
1388  case SYS_AARCH32_CNTP_CVAL:
1389  tmr = TIMER_PTIMER;
1390  treg = TIMER_REG_CVAL;
1391  break;
1392  case SYS_CNTPCT_EL0:
1393  case SYS_CNTPCTSS_EL0:
1394  case SYS_AARCH32_CNTPCT:
1395  tmr = TIMER_PTIMER;
1396  treg = TIMER_REG_CNT;
1397  break;
1398  default:
1399  print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400  kvm_inject_undefined(vcpu);
1401  return false;
1402  }
1403 
1404  if (p->is_write)
1405  kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406  else
1407  p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408 
1409  return true;
1410 }
1411 
1412 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413  s64 new, s64 cur)
1414 {
1415  struct arm64_ftr_bits kvm_ftr = *ftrp;
1416 
1417  /* Some features have different safe value type in KVM than host features */
1418  switch (id) {
1419  case SYS_ID_AA64DFR0_EL1:
1420  switch (kvm_ftr.shift) {
1421  case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422  kvm_ftr.type = FTR_LOWER_SAFE;
1423  break;
1424  case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425  kvm_ftr.type = FTR_LOWER_SAFE;
1426  break;
1427  }
1428  break;
1429  case SYS_ID_DFR0_EL1:
1430  if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431  kvm_ftr.type = FTR_LOWER_SAFE;
1432  break;
1433  }
1434 
1435  return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436 }
1437 
1438 /*
1439  * arm64_check_features() - Check if a feature register value constitutes
1440  * a subset of features indicated by the idreg's KVM sanitised limit.
1441  *
1442  * This function will check if each feature field of @val is the "safe" value
1443  * against idreg's KVM sanitised limit return from reset() callback.
1444  * If a field value in @val is the same as the one in limit, it is always
1445  * considered the safe value regardless For register fields that are not in
1446  * writable, only the value in limit is considered the safe value.
1447  *
1448  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449  */
1450 static int arm64_check_features(struct kvm_vcpu *vcpu,
1451  const struct sys_reg_desc *rd,
1452  u64 val)
1453 {
1454  const struct arm64_ftr_reg *ftr_reg;
1455  const struct arm64_ftr_bits *ftrp = NULL;
1456  u32 id = reg_to_encoding(rd);
1457  u64 writable_mask = rd->val;
1458  u64 limit = rd->reset(vcpu, rd);
1459  u64 mask = 0;
1460 
1461  /*
1462  * Hidden and unallocated ID registers may not have a corresponding
1463  * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464  * only safe value is 0.
1465  */
1466  if (sysreg_visible_as_raz(vcpu, rd))
1467  return val ? -E2BIG : 0;
1468 
1469  ftr_reg = get_arm64_ftr_reg(id);
1470  if (!ftr_reg)
1471  return -EINVAL;
1472 
1473  ftrp = ftr_reg->ftr_bits;
1474 
1475  for (; ftrp && ftrp->width; ftrp++) {
1476  s64 f_val, f_lim, safe_val;
1477  u64 ftr_mask;
1478 
1479  ftr_mask = arm64_ftr_mask(ftrp);
1480  if ((ftr_mask & writable_mask) != ftr_mask)
1481  continue;
1482 
1483  f_val = arm64_ftr_value(ftrp, val);
1484  f_lim = arm64_ftr_value(ftrp, limit);
1485  mask |= ftr_mask;
1486 
1487  if (f_val == f_lim)
1488  safe_val = f_val;
1489  else
1490  safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491 
1492  if (safe_val != f_val)
1493  return -E2BIG;
1494  }
1495 
1496  /* For fields that are not writable, values in limit are the safe values. */
1497  if ((val & ~mask) != (limit & ~mask))
1498  return -E2BIG;
1499 
1500  return 0;
1501 }
1502 
1503 static u8 pmuver_to_perfmon(u8 pmuver)
1504 {
1505  switch (pmuver) {
1506  case ID_AA64DFR0_EL1_PMUVer_IMP:
1507  return ID_DFR0_EL1_PerfMon_PMUv3;
1508  case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509  return ID_DFR0_EL1_PerfMon_IMPDEF;
1510  default:
1511  /* Anything ARMv8.1+ and NI have the same value. For now. */
1512  return pmuver;
1513  }
1514 }
1515 
1516 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1517 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518  const struct sys_reg_desc *r)
1519 {
1520  u32 id = reg_to_encoding(r);
1521  u64 val;
1522 
1523  if (sysreg_visible_as_raz(vcpu, r))
1524  return 0;
1525 
1526  val = read_sanitised_ftr_reg(id);
1527 
1528  switch (id) {
1529  case SYS_ID_AA64PFR1_EL1:
1530  if (!kvm_has_mte(vcpu->kvm))
1531  val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532 
1533  val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534  break;
1535  case SYS_ID_AA64ISAR1_EL1:
1536  if (!vcpu_has_ptrauth(vcpu))
1537  val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541  break;
1542  case SYS_ID_AA64ISAR2_EL1:
1543  if (!vcpu_has_ptrauth(vcpu))
1544  val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546  if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547  val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548  break;
1549  case SYS_ID_AA64MMFR2_EL1:
1550  val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551  break;
1552  case SYS_ID_MMFR4_EL1:
1553  val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554  break;
1555  }
1556 
1557  return val;
1558 }
1559 
1560 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561  const struct sys_reg_desc *r)
1562 {
1563  return __kvm_read_sanitised_id_reg(vcpu, r);
1564 }
1565 
1566 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567 {
1568  return IDREG(vcpu->kvm, reg_to_encoding(r));
1569 }
1570 
1571 /*
1572  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574  */
1575 static inline bool is_id_reg(u32 id)
1576 {
1577  return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578  sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579  sys_reg_CRm(id) < 8);
1580 }
1581 
1582 static inline bool is_aa32_id_reg(u32 id)
1583 {
1584  return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585  sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586  sys_reg_CRm(id) <= 3);
1587 }
1588 
1589 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590  const struct sys_reg_desc *r)
1591 {
1592  u32 id = reg_to_encoding(r);
1593 
1594  switch (id) {
1595  case SYS_ID_AA64ZFR0_EL1:
1596  if (!vcpu_has_sve(vcpu))
1597  return REG_RAZ;
1598  break;
1599  }
1600 
1601  return 0;
1602 }
1603 
1604 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605  const struct sys_reg_desc *r)
1606 {
1607  /*
1608  * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609  * EL. Promote to RAZ/WI in order to guarantee consistency between
1610  * systems.
1611  */
1612  if (!kvm_supports_32bit_el0())
1613  return REG_RAZ | REG_USER_WI;
1614 
1615  return id_visibility(vcpu, r);
1616 }
1617 
1618 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619  const struct sys_reg_desc *r)
1620 {
1621  return REG_RAZ;
1622 }
1623 
1624 /* cpufeature ID register access trap handlers */
1625 
1626 static bool access_id_reg(struct kvm_vcpu *vcpu,
1627  struct sys_reg_params *p,
1628  const struct sys_reg_desc *r)
1629 {
1630  if (p->is_write)
1631  return write_to_read_only(vcpu, p, r);
1632 
1633  p->regval = read_id_reg(vcpu, r);
1634 
1635  return true;
1636 }
1637 
1638 /* Visibility overrides for SVE-specific control registers */
1639 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640  const struct sys_reg_desc *rd)
1641 {
1642  if (vcpu_has_sve(vcpu))
1643  return 0;
1644 
1645  return REG_HIDDEN;
1646 }
1647 
1648 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649  const struct sys_reg_desc *rd)
1650 {
1651  u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652 
1653  if (!vcpu_has_sve(vcpu))
1654  val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655 
1656  /*
1657  * The default is to expose CSV2 == 1 if the HW isn't affected.
1658  * Although this is a per-CPU feature, we make it global because
1659  * asymmetric systems are just a nuisance.
1660  *
1661  * Userspace can override this as long as it doesn't promise
1662  * the impossible.
1663  */
1664  if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665  val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666  val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667  }
1668  if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669  val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670  val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671  }
1672 
1674  val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675  val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676  }
1677 
1678  val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679 
1680  return val;
1681 }
1682 
1683 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \
1684 ({ \
1685  u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \
1686  (val) &= ~reg##_##field##_MASK; \
1687  (val) |= FIELD_PREP(reg##_##field##_MASK, \
1688  min(__f_val, (u64)reg##_##field##_##limit)); \
1689  (val); \
1690 })
1691 
1692 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1693  const struct sys_reg_desc *rd)
1694 {
1695  u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1696 
1697  val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1698 
1699  /*
1700  * Only initialize the PMU version if the vCPU was configured with one.
1701  */
1702  val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1703  if (kvm_vcpu_has_pmu(vcpu))
1704  val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1706 
1707  /* Hide SPE from guests */
1708  val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1709 
1710  return val;
1711 }
1712 
1713 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1714  const struct sys_reg_desc *rd,
1715  u64 val)
1716 {
1717  u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1718  u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1719 
1720  /*
1721  * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1722  * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1723  * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1724  * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1725  * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1726  *
1727  * At minimum, we're on the hook to allow values that were given to
1728  * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1729  * with a more sensible NI. The value of an ID register changing under
1730  * the nose of the guest is unfortunate, but is certainly no more
1731  * surprising than an ill-guided PMU driver poking at impdef system
1732  * registers that end in an UNDEF...
1733  */
1734  if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1735  val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1736 
1737  /*
1738  * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1739  * nonzero minimum safe value.
1740  */
1741  if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1742  return -EINVAL;
1743 
1744  return set_id_reg(vcpu, rd, val);
1745 }
1746 
1747 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1748  const struct sys_reg_desc *rd)
1749 {
1751  u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1752 
1753  val &= ~ID_DFR0_EL1_PerfMon_MASK;
1754  if (kvm_vcpu_has_pmu(vcpu))
1755  val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1756 
1757  val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1758 
1759  return val;
1760 }
1761 
1762 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1763  const struct sys_reg_desc *rd,
1764  u64 val)
1765 {
1766  u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1767  u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1768 
1769  if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1770  val &= ~ID_DFR0_EL1_PerfMon_MASK;
1771  perfmon = 0;
1772  }
1773 
1774  /*
1775  * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1776  * it doesn't promise more than what the HW gives us on the
1777  * AArch64 side (as everything is emulated with that), and
1778  * that this is a PMUv3.
1779  */
1780  if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1781  return -EINVAL;
1782 
1783  if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1784  return -EINVAL;
1785 
1786  return set_id_reg(vcpu, rd, val);
1787 }
1788 
1789 /*
1790  * cpufeature ID register user accessors
1791  *
1792  * For now, these registers are immutable for userspace, so no values
1793  * are stored, and for set_id_reg() we don't allow the effective value
1794  * to be changed.
1795  */
1796 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1797  u64 *val)
1798 {
1799  /*
1800  * Avoid locking if the VM has already started, as the ID registers are
1801  * guaranteed to be invariant at that point.
1802  */
1803  if (kvm_vm_has_ran_once(vcpu->kvm)) {
1804  *val = read_id_reg(vcpu, rd);
1805  return 0;
1806  }
1807 
1808  mutex_lock(&vcpu->kvm->arch.config_lock);
1809  *val = read_id_reg(vcpu, rd);
1810  mutex_unlock(&vcpu->kvm->arch.config_lock);
1811 
1812  return 0;
1813 }
1814 
1815 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1816  u64 val)
1817 {
1818  u32 id = reg_to_encoding(rd);
1819  int ret;
1820 
1821  mutex_lock(&vcpu->kvm->arch.config_lock);
1822 
1823  /*
1824  * Once the VM has started the ID registers are immutable. Reject any
1825  * write that does not match the final register value.
1826  */
1827  if (kvm_vm_has_ran_once(vcpu->kvm)) {
1828  if (val != read_id_reg(vcpu, rd))
1829  ret = -EBUSY;
1830  else
1831  ret = 0;
1832 
1833  mutex_unlock(&vcpu->kvm->arch.config_lock);
1834  return ret;
1835  }
1836 
1837  ret = arm64_check_features(vcpu, rd, val);
1838  if (!ret)
1839  IDREG(vcpu->kvm, id) = val;
1840 
1841  mutex_unlock(&vcpu->kvm->arch.config_lock);
1842 
1843  /*
1844  * arm64_check_features() returns -E2BIG to indicate the register's
1845  * feature set is a superset of the maximally-allowed register value.
1846  * While it would be nice to precisely describe this to userspace, the
1847  * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1848  * writes return -EINVAL.
1849  */
1850  if (ret == -E2BIG)
1851  ret = -EINVAL;
1852  return ret;
1853 }
1854 
1855 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1856  u64 *val)
1857 {
1858  *val = 0;
1859  return 0;
1860 }
1861 
1862 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1863  u64 val)
1864 {
1865  return 0;
1866 }
1867 
1868 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1869  const struct sys_reg_desc *r)
1870 {
1871  if (p->is_write)
1872  return write_to_read_only(vcpu, p, r);
1873 
1874  p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1875  return true;
1876 }
1877 
1878 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1879  const struct sys_reg_desc *r)
1880 {
1881  if (p->is_write)
1882  return write_to_read_only(vcpu, p, r);
1883 
1884  p->regval = __vcpu_sys_reg(vcpu, r->reg);
1885  return true;
1886 }
1887 
1888 /*
1889  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1890  * by the physical CPU which the vcpu currently resides in.
1891  */
1892 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1893 {
1894  u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1895  u64 clidr;
1896  u8 loc;
1897 
1898  if ((ctr_el0 & CTR_EL0_IDC)) {
1899  /*
1900  * Data cache clean to the PoU is not required so LoUU and LoUIS
1901  * will not be set and a unified cache, which will be marked as
1902  * LoC, will be added.
1903  *
1904  * If not DIC, let the unified cache L2 so that an instruction
1905  * cache can be added as L1 later.
1906  */
1907  loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1908  clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1909  } else {
1910  /*
1911  * Data cache clean to the PoU is required so let L1 have a data
1912  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1913  * it can be marked as LoC too.
1914  */
1915  loc = 1;
1916  clidr = 1 << CLIDR_LOUU_SHIFT;
1917  clidr |= 1 << CLIDR_LOUIS_SHIFT;
1918  clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1919  }
1920 
1921  /*
1922  * Instruction cache invalidation to the PoU is required so let L1 have
1923  * an instruction cache. If L1 already has a data cache, it will be
1924  * CACHE_TYPE_SEPARATE.
1925  */
1926  if (!(ctr_el0 & CTR_EL0_DIC))
1927  clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1928 
1929  clidr |= loc << CLIDR_LOC_SHIFT;
1930 
1931  /*
1932  * Add tag cache unified to data cache. Allocation tags and data are
1933  * unified in a cache line so that it looks valid even if there is only
1934  * one cache line.
1935  */
1936  if (kvm_has_mte(vcpu->kvm))
1937  clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1938 
1939  __vcpu_sys_reg(vcpu, r->reg) = clidr;
1940 
1941  return __vcpu_sys_reg(vcpu, r->reg);
1942 }
1943 
1944 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1945  u64 val)
1946 {
1947  u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1948  u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1949 
1950  if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1951  return -EINVAL;
1952 
1953  __vcpu_sys_reg(vcpu, rd->reg) = val;
1954 
1955  return 0;
1956 }
1957 
1958 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1959  const struct sys_reg_desc *r)
1960 {
1961  int reg = r->reg;
1962 
1963  if (p->is_write)
1964  vcpu_write_sys_reg(vcpu, p->regval, reg);
1965  else
1966  p->regval = vcpu_read_sys_reg(vcpu, reg);
1967  return true;
1968 }
1969 
1970 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1971  const struct sys_reg_desc *r)
1972 {
1973  u32 csselr;
1974 
1975  if (p->is_write)
1976  return write_to_read_only(vcpu, p, r);
1977 
1978  csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1979  csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1980  if (csselr < CSSELR_MAX)
1981  p->regval = get_ccsidr(vcpu, csselr);
1982 
1983  return true;
1984 }
1985 
1986 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1987  const struct sys_reg_desc *rd)
1988 {
1989  if (kvm_has_mte(vcpu->kvm))
1990  return 0;
1991 
1992  return REG_HIDDEN;
1993 }
1994 
1995 #define MTE_REG(name) { \
1996  SYS_DESC(SYS_##name), \
1997  .access = undef_access, \
1998  .reset = reset_unknown, \
1999  .reg = name, \
2000  .visibility = mte_visibility, \
2001 }
2002 
2003 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2004  const struct sys_reg_desc *rd)
2005 {
2006  if (vcpu_has_nv(vcpu))
2007  return 0;
2008 
2009  return REG_HIDDEN;
2010 }
2011 
2012 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2013  struct sys_reg_params *p,
2014  const struct sys_reg_desc *r)
2015 {
2016  /*
2017  * We really shouldn't be here, and this is likely the result
2018  * of a misconfigured trap, as this register should target the
2019  * VNCR page, and nothing else.
2020  */
2021  return bad_trap(vcpu, p, r,
2022  "trap of VNCR-backed register");
2023 }
2024 
2025 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2026  struct sys_reg_params *p,
2027  const struct sys_reg_desc *r)
2028 {
2029  /*
2030  * We really shouldn't be here, and this is likely the result
2031  * of a misconfigured trap, as this register should target the
2032  * corresponding EL1, and nothing else.
2033  */
2034  return bad_trap(vcpu, p, r,
2035  "trap of EL2 register redirected to EL1");
2036 }
2037 
2038 #define EL2_REG(name, acc, rst, v) { \
2039  SYS_DESC(SYS_##name), \
2040  .access = acc, \
2041  .reset = rst, \
2042  .reg = name, \
2043  .visibility = el2_visibility, \
2044  .val = v, \
2045 }
2046 
2047 #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v)
2048 #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v)
2049 
2050 /*
2051  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2052  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2053  * handling traps. Given that, they are always hidden from userspace.
2054  */
2055 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2056  const struct sys_reg_desc *rd)
2057 {
2058  return REG_HIDDEN_USER;
2059 }
2060 
2061 #define EL12_REG(name, acc, rst, v) { \
2062  SYS_DESC(SYS_##name##_EL12), \
2063  .access = acc, \
2064  .reset = rst, \
2065  .reg = name##_EL1, \
2066  .val = v, \
2067  .visibility = hidden_user_visibility, \
2068 }
2069 
2070 /*
2071  * Since reset() callback and field val are not used for idregs, they will be
2072  * used for specific purposes for idregs.
2073  * The reset() would return KVM sanitised register value. The value would be the
2074  * same as the host kernel sanitised value if there is no KVM sanitisation.
2075  * The val would be used as a mask indicating writable fields for the idreg.
2076  * Only bits with 1 are writable from userspace. This mask might not be
2077  * necessary in the future whenever all ID registers are enabled as writable
2078  * from userspace.
2079  */
2080 
2081 #define ID_DESC(name) \
2082  SYS_DESC(SYS_##name), \
2083  .access = access_id_reg, \
2084  .get_user = get_id_reg \
2085 
2086 /* sys_reg_desc initialiser for known cpufeature ID registers */
2087 #define ID_SANITISED(name) { \
2088  ID_DESC(name), \
2089  .set_user = set_id_reg, \
2090  .visibility = id_visibility, \
2091  .reset = kvm_read_sanitised_id_reg, \
2092  .val = 0, \
2093 }
2094 
2095 /* sys_reg_desc initialiser for known cpufeature ID registers */
2096 #define AA32_ID_SANITISED(name) { \
2097  ID_DESC(name), \
2098  .set_user = set_id_reg, \
2099  .visibility = aa32_id_visibility, \
2100  .reset = kvm_read_sanitised_id_reg, \
2101  .val = 0, \
2102 }
2103 
2104 /* sys_reg_desc initialiser for writable ID registers */
2105 #define ID_WRITABLE(name, mask) { \
2106  ID_DESC(name), \
2107  .set_user = set_id_reg, \
2108  .visibility = id_visibility, \
2109  .reset = kvm_read_sanitised_id_reg, \
2110  .val = mask, \
2111 }
2112 
2113 /*
2114  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2115  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2116  * (1 <= crm < 8, 0 <= Op2 < 8).
2117  */
2118 #define ID_UNALLOCATED(crm, op2) { \
2119  Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
2120  .access = access_id_reg, \
2121  .get_user = get_id_reg, \
2122  .set_user = set_id_reg, \
2123  .visibility = raz_visibility, \
2124  .reset = kvm_read_sanitised_id_reg, \
2125  .val = 0, \
2126 }
2127 
2128 /*
2129  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2130  * For now, these are exposed just like unallocated ID regs: they appear
2131  * RAZ for the guest.
2132  */
2133 #define ID_HIDDEN(name) { \
2134  ID_DESC(name), \
2135  .set_user = set_id_reg, \
2136  .visibility = raz_visibility, \
2137  .reset = kvm_read_sanitised_id_reg, \
2138  .val = 0, \
2139 }
2140 
2141 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2142  struct sys_reg_params *p,
2143  const struct sys_reg_desc *r)
2144 {
2145  if (p->is_write)
2146  __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2147  else
2148  p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2149 
2150  return true;
2151 }
2152 
2153 static bool access_elr(struct kvm_vcpu *vcpu,
2154  struct sys_reg_params *p,
2155  const struct sys_reg_desc *r)
2156 {
2157  if (p->is_write)
2158  vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2159  else
2160  p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2161 
2162  return true;
2163 }
2164 
2165 static bool access_spsr(struct kvm_vcpu *vcpu,
2166  struct sys_reg_params *p,
2167  const struct sys_reg_desc *r)
2168 {
2169  if (p->is_write)
2170  __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2171  else
2172  p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2173 
2174  return true;
2175 }
2176 
2177 /*
2178  * Architected system registers.
2179  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2180  *
2181  * Debug handling: We do trap most, if not all debug related system
2182  * registers. The implementation is good enough to ensure that a guest
2183  * can use these with minimal performance degradation. The drawback is
2184  * that we don't implement any of the external debug architecture.
2185  * This should be revisited if we ever encounter a more demanding
2186  * guest...
2187  */
2188 static const struct sys_reg_desc sys_reg_descs[] = {
2189  { SYS_DESC(SYS_DC_ISW), access_dcsw },
2190  { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2191  { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2192  { SYS_DESC(SYS_DC_CSW), access_dcsw },
2193  { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2194  { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2195  { SYS_DESC(SYS_DC_CISW), access_dcsw },
2196  { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2197  { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2198 
2201  { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2202  { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2217 
2218  { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2219  { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2220  { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2221  OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2222  { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2223  { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2224  { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2225  { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2226  { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2227 
2228  { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2229  { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2230  // DBGDTR[TR]X_EL0 share the same encoding
2231  { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2232 
2233  { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2234 
2235  { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2236 
2237  /*
2238  * ID regs: all ID_SANITISED() entries here must have corresponding
2239  * entries in arm64_ftr_regs[].
2240  */
2241 
2242  /* AArch64 mappings of the AArch32 ID registers */
2243  /* CRm=1 */
2244  AA32_ID_SANITISED(ID_PFR0_EL1),
2245  AA32_ID_SANITISED(ID_PFR1_EL1),
2246  { SYS_DESC(SYS_ID_DFR0_EL1),
2247  .access = access_id_reg,
2248  .get_user = get_id_reg,
2249  .set_user = set_id_dfr0_el1,
2250  .visibility = aa32_id_visibility,
2251  .reset = read_sanitised_id_dfr0_el1,
2252  .val = ID_DFR0_EL1_PerfMon_MASK |
2253  ID_DFR0_EL1_CopDbg_MASK, },
2254  ID_HIDDEN(ID_AFR0_EL1),
2255  AA32_ID_SANITISED(ID_MMFR0_EL1),
2256  AA32_ID_SANITISED(ID_MMFR1_EL1),
2257  AA32_ID_SANITISED(ID_MMFR2_EL1),
2258  AA32_ID_SANITISED(ID_MMFR3_EL1),
2259 
2260  /* CRm=2 */
2261  AA32_ID_SANITISED(ID_ISAR0_EL1),
2262  AA32_ID_SANITISED(ID_ISAR1_EL1),
2263  AA32_ID_SANITISED(ID_ISAR2_EL1),
2264  AA32_ID_SANITISED(ID_ISAR3_EL1),
2265  AA32_ID_SANITISED(ID_ISAR4_EL1),
2266  AA32_ID_SANITISED(ID_ISAR5_EL1),
2267  AA32_ID_SANITISED(ID_MMFR4_EL1),
2268  AA32_ID_SANITISED(ID_ISAR6_EL1),
2269 
2270  /* CRm=3 */
2271  AA32_ID_SANITISED(MVFR0_EL1),
2272  AA32_ID_SANITISED(MVFR1_EL1),
2273  AA32_ID_SANITISED(MVFR2_EL1),
2274  ID_UNALLOCATED(3,3),
2275  AA32_ID_SANITISED(ID_PFR2_EL1),
2276  ID_HIDDEN(ID_DFR1_EL1),
2277  AA32_ID_SANITISED(ID_MMFR5_EL1),
2278  ID_UNALLOCATED(3,7),
2279 
2280  /* AArch64 ID registers */
2281  /* CRm=4 */
2282  { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2283  .access = access_id_reg,
2284  .get_user = get_id_reg,
2285  .set_user = set_id_reg,
2287  .val = ~(ID_AA64PFR0_EL1_AMU |
2288  ID_AA64PFR0_EL1_MPAM |
2289  ID_AA64PFR0_EL1_SVE |
2290  ID_AA64PFR0_EL1_RAS |
2291  ID_AA64PFR0_EL1_GIC |
2292  ID_AA64PFR0_EL1_AdvSIMD |
2293  ID_AA64PFR0_EL1_FP), },
2294  ID_SANITISED(ID_AA64PFR1_EL1),
2295  ID_UNALLOCATED(4,2),
2296  ID_UNALLOCATED(4,3),
2297  ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2298  ID_HIDDEN(ID_AA64SMFR0_EL1),
2299  ID_UNALLOCATED(4,6),
2300  ID_UNALLOCATED(4,7),
2301 
2302  /* CRm=5 */
2303  { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2304  .access = access_id_reg,
2305  .get_user = get_id_reg,
2306  .set_user = set_id_aa64dfr0_el1,
2308  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2309  ID_AA64DFR0_EL1_DebugVer_MASK, },
2310  ID_SANITISED(ID_AA64DFR1_EL1),
2311  ID_UNALLOCATED(5,2),
2312  ID_UNALLOCATED(5,3),
2313  ID_HIDDEN(ID_AA64AFR0_EL1),
2314  ID_HIDDEN(ID_AA64AFR1_EL1),
2315  ID_UNALLOCATED(5,6),
2316  ID_UNALLOCATED(5,7),
2317 
2318  /* CRm=6 */
2319  ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2320  ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2321  ID_AA64ISAR1_EL1_GPA |
2322  ID_AA64ISAR1_EL1_API |
2323  ID_AA64ISAR1_EL1_APA)),
2324  ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2325  ID_AA64ISAR2_EL1_APA3 |
2326  ID_AA64ISAR2_EL1_GPA3)),
2327  ID_UNALLOCATED(6,3),
2328  ID_UNALLOCATED(6,4),
2329  ID_UNALLOCATED(6,5),
2330  ID_UNALLOCATED(6,6),
2331  ID_UNALLOCATED(6,7),
2332 
2333  /* CRm=7 */
2334  ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2335  ID_AA64MMFR0_EL1_TGRAN4_2 |
2336  ID_AA64MMFR0_EL1_TGRAN64_2 |
2337  ID_AA64MMFR0_EL1_TGRAN16_2)),
2338  ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2339  ID_AA64MMFR1_EL1_HCX |
2340  ID_AA64MMFR1_EL1_XNX |
2341  ID_AA64MMFR1_EL1_TWED |
2342  ID_AA64MMFR1_EL1_XNX |
2343  ID_AA64MMFR1_EL1_VH |
2344  ID_AA64MMFR1_EL1_VMIDBits)),
2345  ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2346  ID_AA64MMFR2_EL1_EVT |
2347  ID_AA64MMFR2_EL1_FWB |
2348  ID_AA64MMFR2_EL1_IDS |
2349  ID_AA64MMFR2_EL1_NV |
2350  ID_AA64MMFR2_EL1_CCIDX)),
2351  ID_SANITISED(ID_AA64MMFR3_EL1),
2352  ID_UNALLOCATED(7,4),
2353  ID_UNALLOCATED(7,5),
2354  ID_UNALLOCATED(7,6),
2355  ID_UNALLOCATED(7,7),
2356 
2357  { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2358  { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2359  { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2360 
2361  MTE_REG(RGSR_EL1),
2362  MTE_REG(GCR_EL1),
2363 
2364  { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2365  { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2366  { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2367  { SYS_DESC(SYS_SMCR_EL1), undef_access },
2368  { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2369  { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2370  { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2371  { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2372 
2373  PTRAUTH_KEY(APIA),
2374  PTRAUTH_KEY(APIB),
2375  PTRAUTH_KEY(APDA),
2376  PTRAUTH_KEY(APDB),
2377  PTRAUTH_KEY(APGA),
2378 
2379  { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2380  { SYS_DESC(SYS_ELR_EL1), access_elr},
2381 
2382  { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2383  { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2384  { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2385 
2386  { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2387  { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2388  { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2389  { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2390  { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2391  { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2392  { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2393  { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2394 
2395  MTE_REG(TFSR_EL1),
2396  MTE_REG(TFSRE0_EL1),
2397 
2398  { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2399  { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2400 
2401  { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2402  { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2403  { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2404  { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2405  { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2406  { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2407  { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2408  { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2409  { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2410  { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2411  { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2412  /* PMBIDR_EL1 is not trapped */
2413 
2414  { PMU_SYS_REG(PMINTENSET_EL1),
2415  .access = access_pminten, .reg = PMINTENSET_EL1,
2416  .get_user = get_pmreg, .set_user = set_pmreg },
2417  { PMU_SYS_REG(PMINTENCLR_EL1),
2418  .access = access_pminten, .reg = PMINTENSET_EL1,
2419  .get_user = get_pmreg, .set_user = set_pmreg },
2420  { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2421 
2422  { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2423  { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2424  { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2425  { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2426 
2427  { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2428  { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2429  { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2430  { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2431  { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2432 
2433  { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2434  { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2435 
2436  { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2437  { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2438  { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2439  { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2440  { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2441  { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2442  { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2443  { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2444  { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2445  { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2446  { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2447  { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2448 
2449  { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2450  { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2451 
2452  { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2453 
2454  { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2455 
2456  { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2457 
2458  { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2459  { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2460  .set_user = set_clidr },
2461  { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2462  { SYS_DESC(SYS_SMIDR_EL1), undef_access },
2463  { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2464  { SYS_DESC(SYS_CTR_EL0), access_ctr },
2465  { SYS_DESC(SYS_SVCR), undef_access },
2466 
2467  { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2468  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2469  { PMU_SYS_REG(PMCNTENSET_EL0),
2470  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2471  .get_user = get_pmreg, .set_user = set_pmreg },
2472  { PMU_SYS_REG(PMCNTENCLR_EL0),
2473  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2474  .get_user = get_pmreg, .set_user = set_pmreg },
2475  { PMU_SYS_REG(PMOVSCLR_EL0),
2476  .access = access_pmovs, .reg = PMOVSSET_EL0,
2477  .get_user = get_pmreg, .set_user = set_pmreg },
2478  /*
2479  * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2480  * previously (and pointlessly) advertised in the past...
2481  */
2482  { PMU_SYS_REG(PMSWINC_EL0),
2483  .get_user = get_raz_reg, .set_user = set_wi_reg,
2484  .access = access_pmswinc, .reset = NULL },
2485  { PMU_SYS_REG(PMSELR_EL0),
2486  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2487  { PMU_SYS_REG(PMCEID0_EL0),
2488  .access = access_pmceid, .reset = NULL },
2489  { PMU_SYS_REG(PMCEID1_EL0),
2490  .access = access_pmceid, .reset = NULL },
2491  { PMU_SYS_REG(PMCCNTR_EL0),
2492  .access = access_pmu_evcntr, .reset = reset_unknown,
2493  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2494  { PMU_SYS_REG(PMXEVTYPER_EL0),
2495  .access = access_pmu_evtyper, .reset = NULL },
2496  { PMU_SYS_REG(PMXEVCNTR_EL0),
2497  .access = access_pmu_evcntr, .reset = NULL },
2498  /*
2499  * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2500  * in 32bit mode. Here we choose to reset it as zero for consistency.
2501  */
2502  { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2503  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2504  { PMU_SYS_REG(PMOVSSET_EL0),
2505  .access = access_pmovs, .reg = PMOVSSET_EL0,
2506  .get_user = get_pmreg, .set_user = set_pmreg },
2507 
2508  { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2509  { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2510  { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2511 
2512  { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2513 
2514  { SYS_DESC(SYS_AMCR_EL0), undef_access },
2515  { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2516  { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2517  { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2518  { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2519  { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2520  { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2521  { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2522  AMU_AMEVCNTR0_EL0(0),
2523  AMU_AMEVCNTR0_EL0(1),
2524  AMU_AMEVCNTR0_EL0(2),
2525  AMU_AMEVCNTR0_EL0(3),
2526  AMU_AMEVCNTR0_EL0(4),
2527  AMU_AMEVCNTR0_EL0(5),
2528  AMU_AMEVCNTR0_EL0(6),
2529  AMU_AMEVCNTR0_EL0(7),
2530  AMU_AMEVCNTR0_EL0(8),
2531  AMU_AMEVCNTR0_EL0(9),
2532  AMU_AMEVCNTR0_EL0(10),
2533  AMU_AMEVCNTR0_EL0(11),
2534  AMU_AMEVCNTR0_EL0(12),
2535  AMU_AMEVCNTR0_EL0(13),
2536  AMU_AMEVCNTR0_EL0(14),
2537  AMU_AMEVCNTR0_EL0(15),
2538  AMU_AMEVTYPER0_EL0(0),
2539  AMU_AMEVTYPER0_EL0(1),
2540  AMU_AMEVTYPER0_EL0(2),
2541  AMU_AMEVTYPER0_EL0(3),
2542  AMU_AMEVTYPER0_EL0(4),
2543  AMU_AMEVTYPER0_EL0(5),
2544  AMU_AMEVTYPER0_EL0(6),
2545  AMU_AMEVTYPER0_EL0(7),
2546  AMU_AMEVTYPER0_EL0(8),
2547  AMU_AMEVTYPER0_EL0(9),
2548  AMU_AMEVTYPER0_EL0(10),
2549  AMU_AMEVTYPER0_EL0(11),
2550  AMU_AMEVTYPER0_EL0(12),
2551  AMU_AMEVTYPER0_EL0(13),
2552  AMU_AMEVTYPER0_EL0(14),
2553  AMU_AMEVTYPER0_EL0(15),
2554  AMU_AMEVCNTR1_EL0(0),
2555  AMU_AMEVCNTR1_EL0(1),
2556  AMU_AMEVCNTR1_EL0(2),
2557  AMU_AMEVCNTR1_EL0(3),
2558  AMU_AMEVCNTR1_EL0(4),
2559  AMU_AMEVCNTR1_EL0(5),
2560  AMU_AMEVCNTR1_EL0(6),
2561  AMU_AMEVCNTR1_EL0(7),
2562  AMU_AMEVCNTR1_EL0(8),
2563  AMU_AMEVCNTR1_EL0(9),
2564  AMU_AMEVCNTR1_EL0(10),
2565  AMU_AMEVCNTR1_EL0(11),
2566  AMU_AMEVCNTR1_EL0(12),
2567  AMU_AMEVCNTR1_EL0(13),
2568  AMU_AMEVCNTR1_EL0(14),
2569  AMU_AMEVCNTR1_EL0(15),
2570  AMU_AMEVTYPER1_EL0(0),
2571  AMU_AMEVTYPER1_EL0(1),
2572  AMU_AMEVTYPER1_EL0(2),
2573  AMU_AMEVTYPER1_EL0(3),
2574  AMU_AMEVTYPER1_EL0(4),
2575  AMU_AMEVTYPER1_EL0(5),
2576  AMU_AMEVTYPER1_EL0(6),
2577  AMU_AMEVTYPER1_EL0(7),
2578  AMU_AMEVTYPER1_EL0(8),
2579  AMU_AMEVTYPER1_EL0(9),
2580  AMU_AMEVTYPER1_EL0(10),
2581  AMU_AMEVTYPER1_EL0(11),
2582  AMU_AMEVTYPER1_EL0(12),
2583  AMU_AMEVTYPER1_EL0(13),
2584  AMU_AMEVTYPER1_EL0(14),
2585  AMU_AMEVTYPER1_EL0(15),
2586 
2587  { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2588  { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2589  { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2590  { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2591  { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2592 
2593  /* PMEVCNTRn_EL0 */
2594  PMU_PMEVCNTR_EL0(0),
2595  PMU_PMEVCNTR_EL0(1),
2596  PMU_PMEVCNTR_EL0(2),
2597  PMU_PMEVCNTR_EL0(3),
2598  PMU_PMEVCNTR_EL0(4),
2599  PMU_PMEVCNTR_EL0(5),
2600  PMU_PMEVCNTR_EL0(6),
2601  PMU_PMEVCNTR_EL0(7),
2602  PMU_PMEVCNTR_EL0(8),
2603  PMU_PMEVCNTR_EL0(9),
2604  PMU_PMEVCNTR_EL0(10),
2605  PMU_PMEVCNTR_EL0(11),
2606  PMU_PMEVCNTR_EL0(12),
2607  PMU_PMEVCNTR_EL0(13),
2608  PMU_PMEVCNTR_EL0(14),
2609  PMU_PMEVCNTR_EL0(15),
2610  PMU_PMEVCNTR_EL0(16),
2611  PMU_PMEVCNTR_EL0(17),
2612  PMU_PMEVCNTR_EL0(18),
2613  PMU_PMEVCNTR_EL0(19),
2614  PMU_PMEVCNTR_EL0(20),
2615  PMU_PMEVCNTR_EL0(21),
2616  PMU_PMEVCNTR_EL0(22),
2617  PMU_PMEVCNTR_EL0(23),
2618  PMU_PMEVCNTR_EL0(24),
2619  PMU_PMEVCNTR_EL0(25),
2620  PMU_PMEVCNTR_EL0(26),
2621  PMU_PMEVCNTR_EL0(27),
2622  PMU_PMEVCNTR_EL0(28),
2623  PMU_PMEVCNTR_EL0(29),
2624  PMU_PMEVCNTR_EL0(30),
2625  /* PMEVTYPERn_EL0 */
2626  PMU_PMEVTYPER_EL0(0),
2627  PMU_PMEVTYPER_EL0(1),
2628  PMU_PMEVTYPER_EL0(2),
2629  PMU_PMEVTYPER_EL0(3),
2630  PMU_PMEVTYPER_EL0(4),
2631  PMU_PMEVTYPER_EL0(5),
2632  PMU_PMEVTYPER_EL0(6),
2633  PMU_PMEVTYPER_EL0(7),
2634  PMU_PMEVTYPER_EL0(8),
2635  PMU_PMEVTYPER_EL0(9),
2636  PMU_PMEVTYPER_EL0(10),
2637  PMU_PMEVTYPER_EL0(11),
2638  PMU_PMEVTYPER_EL0(12),
2639  PMU_PMEVTYPER_EL0(13),
2640  PMU_PMEVTYPER_EL0(14),
2641  PMU_PMEVTYPER_EL0(15),
2642  PMU_PMEVTYPER_EL0(16),
2643  PMU_PMEVTYPER_EL0(17),
2644  PMU_PMEVTYPER_EL0(18),
2645  PMU_PMEVTYPER_EL0(19),
2646  PMU_PMEVTYPER_EL0(20),
2647  PMU_PMEVTYPER_EL0(21),
2648  PMU_PMEVTYPER_EL0(22),
2649  PMU_PMEVTYPER_EL0(23),
2650  PMU_PMEVTYPER_EL0(24),
2651  PMU_PMEVTYPER_EL0(25),
2652  PMU_PMEVTYPER_EL0(26),
2653  PMU_PMEVTYPER_EL0(27),
2654  PMU_PMEVTYPER_EL0(28),
2655  PMU_PMEVTYPER_EL0(29),
2656  PMU_PMEVTYPER_EL0(30),
2657  /*
2658  * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2659  * in 32bit mode. Here we choose to reset it as zero for consistency.
2660  */
2661  { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2662  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2663 
2664  EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2665  EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2666  EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2667  EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2668  EL2_REG_VNCR(HCR_EL2, reset_val, 0),
2669  EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2670  EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2671  EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2672  EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2673  EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2674  EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2675  EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2676 
2677  EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2678 
2679  EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2680  EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2681  EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2682  EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2683  EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2684 
2685  { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2686  EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2687  EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2688  EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2689  EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2690  EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2691  { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2692 
2693  /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2694  { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2695  .visibility = hidden_user_visibility },
2696  { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2697  .visibility = hidden_user_visibility },
2698  { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2699  .visibility = hidden_user_visibility },
2700  { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2701  .visibility = hidden_user_visibility },
2702 
2703  { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2704  EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2705  EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2706  EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2707  { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2708 
2709  EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2710  EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2711 
2712  EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2713  EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2714 
2715  EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2716  EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2717  { SYS_DESC(SYS_RMR_EL2), trap_undef },
2718 
2719  EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2720  EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2721 
2722  EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2723  EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2724 
2725  EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2726 
2727  EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2728 };
2729 
2730 static const struct sys_reg_desc *first_idreg;
2731 
2732 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2733  struct sys_reg_params *p,
2734  const struct sys_reg_desc *r)
2735 {
2736  if (p->is_write) {
2737  return ignore_write(vcpu, p);
2738  } else {
2739  u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2740  u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
2741  u32 el3 = !!SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr);
2742 
2743  p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2744  (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2745  (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2746  (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2747  (1 << 15) | (el3 << 14) | (el3 << 12));
2748  return true;
2749  }
2750 }
2751 
2752 /*
2753  * AArch32 debug register mappings
2754  *
2755  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2756  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2757  *
2758  * None of the other registers share their location, so treat them as
2759  * if they were 64bit.
2760  */
2761 #define DBG_BCR_BVR_WCR_WVR(n) \
2762  /* DBGBVRn */ \
2763  { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2764  /* DBGBCRn */ \
2765  { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
2766  /* DBGWVRn */ \
2767  { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
2768  /* DBGWCRn */ \
2769  { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2770 
2771 #define DBGBXVR(n) \
2772  { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2773 
2774 /*
2775  * Trapped cp14 registers. We generally ignore most of the external
2776  * debug, on the principle that they don't really make sense to a
2777  * guest. Revisit this one day, would this principle change.
2778  */
2779 static const struct sys_reg_desc cp14_regs[] = {
2780  /* DBGDIDR */
2781  { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2782  /* DBGDTRRXext */
2783  { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2784 
2786  /* DBGDSCRint */
2787  { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2789  /* DBGDCCINT */
2790  { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2791  /* DBGDSCRext */
2792  { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2794  /* DBGDTR[RT]Xint */
2795  { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2796  /* DBGDTR[RT]Xext */
2797  { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2801  /* DBGWFAR */
2802  { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2803  /* DBGOSECCR */
2804  { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2806  /* DBGVCR */
2807  { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2811  DBG_BCR_BVR_WCR_WVR(10),
2812  DBG_BCR_BVR_WCR_WVR(11),
2813  DBG_BCR_BVR_WCR_WVR(12),
2814  DBG_BCR_BVR_WCR_WVR(13),
2815  DBG_BCR_BVR_WCR_WVR(14),
2816  DBG_BCR_BVR_WCR_WVR(15),
2817 
2818  /* DBGDRAR (32bit) */
2819  { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2820 
2821  DBGBXVR(0),
2822  /* DBGOSLAR */
2823  { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2824  DBGBXVR(1),
2825  /* DBGOSLSR */
2826  { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2827  DBGBXVR(2),
2828  DBGBXVR(3),
2829  /* DBGOSDLR */
2830  { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2831  DBGBXVR(4),
2832  /* DBGPRCR */
2833  { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2834  DBGBXVR(5),
2835  DBGBXVR(6),
2836  DBGBXVR(7),
2837  DBGBXVR(8),
2838  DBGBXVR(9),
2839  DBGBXVR(10),
2840  DBGBXVR(11),
2841  DBGBXVR(12),
2842  DBGBXVR(13),
2843  DBGBXVR(14),
2844  DBGBXVR(15),
2845 
2846  /* DBGDSAR (32bit) */
2847  { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2848 
2849  /* DBGDEVID2 */
2850  { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2851  /* DBGDEVID1 */
2852  { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2853  /* DBGDEVID */
2854  { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2855  /* DBGCLAIMSET */
2856  { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2857  /* DBGCLAIMCLR */
2858  { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2859  /* DBGAUTHSTATUS */
2860  { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2861 };
2862 
2863 /* Trapped cp14 64bit registers */
2864 static const struct sys_reg_desc cp14_64_regs[] = {
2865  /* DBGDRAR (64bit) */
2866  { Op1( 0), CRm( 1), .access = trap_raz_wi },
2867 
2868  /* DBGDSAR (64bit) */
2869  { Op1( 0), CRm( 2), .access = trap_raz_wi },
2870 };
2871 
2872 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
2873  AA32(_map), \
2874  Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
2875  .visibility = pmu_visibility
2876 
2877 /* Macro to expand the PMEVCNTRn register */
2878 #define PMU_PMEVCNTR(n) \
2879  { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2880  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2881  .access = access_pmu_evcntr }
2882 
2883 /* Macro to expand the PMEVTYPERn register */
2884 #define PMU_PMEVTYPER(n) \
2885  { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2886  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2887  .access = access_pmu_evtyper }
2888 /*
2889  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2890  * depending on the way they are accessed (as a 32bit or a 64bit
2891  * register).
2892  */
2893 static const struct sys_reg_desc cp15_regs[] = {
2894  { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2895  { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2896  /* ACTLR */
2897  { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2898  /* ACTLR2 */
2899  { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2900  { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2901  { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2902  /* TTBCR */
2903  { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2904  /* TTBCR2 */
2905  { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2906  { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2907  /* DFSR */
2908  { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2909  { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2910  /* ADFSR */
2911  { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2912  /* AIFSR */
2913  { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2914  /* DFAR */
2915  { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2916  /* IFAR */
2917  { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2918 
2919  /*
2920  * DC{C,I,CI}SW operations:
2921  */
2922  { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2923  { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2924  { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2925 
2926  /* PMU */
2927  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2928  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2929  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2930  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2931  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2932  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2933  { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
2934  { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
2935  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2936  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2937  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2938  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2939  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2940  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2941  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2942  { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
2943  { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
2944  /* PMMIR */
2945  { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2946 
2947  /* PRRR/MAIR0 */
2948  { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2949  /* NMRR/MAIR1 */
2950  { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2951  /* AMAIR0 */
2952  { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2953  /* AMAIR1 */
2954  { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2955 
2956  /* ICC_SRE */
2957  { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2958 
2959  { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2960 
2961  /* Arch Tmers */
2962  { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2963  { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2964 
2965  /* PMEVCNTRn */
2966  PMU_PMEVCNTR(0),
2967  PMU_PMEVCNTR(1),
2968  PMU_PMEVCNTR(2),
2969  PMU_PMEVCNTR(3),
2970  PMU_PMEVCNTR(4),
2971  PMU_PMEVCNTR(5),
2972  PMU_PMEVCNTR(6),
2973  PMU_PMEVCNTR(7),
2974  PMU_PMEVCNTR(8),
2975  PMU_PMEVCNTR(9),
2976  PMU_PMEVCNTR(10),
2977  PMU_PMEVCNTR(11),
2978  PMU_PMEVCNTR(12),
2979  PMU_PMEVCNTR(13),
2980  PMU_PMEVCNTR(14),
2981  PMU_PMEVCNTR(15),
2982  PMU_PMEVCNTR(16),
2983  PMU_PMEVCNTR(17),
2984  PMU_PMEVCNTR(18),
2985  PMU_PMEVCNTR(19),
2986  PMU_PMEVCNTR(20),
2987  PMU_PMEVCNTR(21),
2988  PMU_PMEVCNTR(22),
2989  PMU_PMEVCNTR(23),
2990  PMU_PMEVCNTR(24),
2991  PMU_PMEVCNTR(25),
2992  PMU_PMEVCNTR(26),
2993  PMU_PMEVCNTR(27),
2994  PMU_PMEVCNTR(28),
2995  PMU_PMEVCNTR(29),
2996  PMU_PMEVCNTR(30),
2997  /* PMEVTYPERn */
2998  PMU_PMEVTYPER(0),
2999  PMU_PMEVTYPER(1),
3000  PMU_PMEVTYPER(2),
3001  PMU_PMEVTYPER(3),
3002  PMU_PMEVTYPER(4),
3003  PMU_PMEVTYPER(5),
3004  PMU_PMEVTYPER(6),
3005  PMU_PMEVTYPER(7),
3006  PMU_PMEVTYPER(8),
3007  PMU_PMEVTYPER(9),
3008  PMU_PMEVTYPER(10),
3009  PMU_PMEVTYPER(11),
3010  PMU_PMEVTYPER(12),
3011  PMU_PMEVTYPER(13),
3012  PMU_PMEVTYPER(14),
3013  PMU_PMEVTYPER(15),
3014  PMU_PMEVTYPER(16),
3015  PMU_PMEVTYPER(17),
3016  PMU_PMEVTYPER(18),
3017  PMU_PMEVTYPER(19),
3018  PMU_PMEVTYPER(20),
3019  PMU_PMEVTYPER(21),
3020  PMU_PMEVTYPER(22),
3021  PMU_PMEVTYPER(23),
3022  PMU_PMEVTYPER(24),
3023  PMU_PMEVTYPER(25),
3024  PMU_PMEVTYPER(26),
3025  PMU_PMEVTYPER(27),
3026  PMU_PMEVTYPER(28),
3027  PMU_PMEVTYPER(29),
3028  PMU_PMEVTYPER(30),
3029  /* PMCCFILTR */
3030  { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3031 
3032  { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3033  { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3034 
3035  /* CCSIDR2 */
3036  { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
3037 
3038  { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3039 };
3040 
3041 static const struct sys_reg_desc cp15_64_regs[] = {
3042  { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3043  { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3044  { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3045  { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
3046  { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3047  { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3048  { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3049  { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
3050  { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
3051 };
3052 
3053 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3054  bool is_32)
3055 {
3056  unsigned int i;
3057 
3058  for (i = 0; i < n; i++) {
3059  if (!is_32 && table[i].reg && !table[i].reset) {
3060  kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3061  return false;
3062  }
3063 
3064  if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3065  kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3066  return false;
3067  }
3068  }
3069 
3070  return true;
3071 }
3072 
3073 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3074 {
3075  kvm_inject_undefined(vcpu);
3076  return 1;
3077 }
3078 
3079 static void perform_access(struct kvm_vcpu *vcpu,
3080  struct sys_reg_params *params,
3081  const struct sys_reg_desc *r)
3082 {
3083  trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3084 
3085  /* Check for regs disabled by runtime config */
3086  if (sysreg_hidden(vcpu, r)) {
3087  kvm_inject_undefined(vcpu);
3088  return;
3089  }
3090 
3091  /*
3092  * Not having an accessor means that we have configured a trap
3093  * that we don't know how to handle. This certainly qualifies
3094  * as a gross bug that should be fixed right away.
3095  */
3096  BUG_ON(!r->access);
3097 
3098  /* Skip instruction if instructed so */
3099  if (likely(r->access(vcpu, params, r)))
3100  kvm_incr_pc(vcpu);
3101 }
3102 
3103 /*
3104  * emulate_cp -- tries to match a sys_reg access in a handling table, and
3105  * call the corresponding trap handler.
3106  *
3107  * @params: pointer to the descriptor of the access
3108  * @table: array of trap descriptors
3109  * @num: size of the trap descriptor array
3110  *
3111  * Return true if the access has been handled, false if not.
3112  */
3113 static bool emulate_cp(struct kvm_vcpu *vcpu,
3114  struct sys_reg_params *params,
3115  const struct sys_reg_desc *table,
3116  size_t num)
3117 {
3118  const struct sys_reg_desc *r;
3119 
3120  if (!table)
3121  return false; /* Not handled */
3122 
3123  r = find_reg(params, table, num);
3124 
3125  if (r) {
3126  perform_access(vcpu, params, r);
3127  return true;
3128  }
3129 
3130  /* Not handled */
3131  return false;
3132 }
3133 
3134 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3135  struct sys_reg_params *params)
3136 {
3137  u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3138  int cp = -1;
3139 
3140  switch (esr_ec) {
3141  case ESR_ELx_EC_CP15_32:
3142  case ESR_ELx_EC_CP15_64:
3143  cp = 15;
3144  break;
3145  case ESR_ELx_EC_CP14_MR:
3146  case ESR_ELx_EC_CP14_64:
3147  cp = 14;
3148  break;
3149  default:
3150  WARN_ON(1);
3151  }
3152 
3153  print_sys_reg_msg(params,
3154  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3155  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3156  kvm_inject_undefined(vcpu);
3157 }
3158 
3159 /**
3160  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3161  * @vcpu: The VCPU pointer
3162  * @run: The kvm_run struct
3163  */
3164 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3165  const struct sys_reg_desc *global,
3166  size_t nr_global)
3167 {
3168  struct sys_reg_params params;
3169  u64 esr = kvm_vcpu_get_esr(vcpu);
3170  int Rt = kvm_vcpu_sys_get_rt(vcpu);
3171  int Rt2 = (esr >> 10) & 0x1f;
3172 
3173  params.CRm = (esr >> 1) & 0xf;
3174  params.is_write = ((esr & 1) == 0);
3175 
3176  params.Op0 = 0;
3177  params.Op1 = (esr >> 16) & 0xf;
3178  params.Op2 = 0;
3179  params.CRn = 0;
3180 
3181  /*
3182  * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3183  * backends between AArch32 and AArch64, we get away with it.
3184  */
3185  if (params.is_write) {
3186  params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3187  params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3188  }
3189 
3190  /*
3191  * If the table contains a handler, handle the
3192  * potential register operation in the case of a read and return
3193  * with success.
3194  */
3195  if (emulate_cp(vcpu, &params, global, nr_global)) {
3196  /* Split up the value between registers for the read side */
3197  if (!params.is_write) {
3198  vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3199  vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3200  }
3201 
3202  return 1;
3203  }
3204 
3205  unhandled_cp_access(vcpu, &params);
3206  return 1;
3207 }
3208 
3209 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3210 
3211 /*
3212  * The CP10 ID registers are architecturally mapped to AArch64 feature
3213  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3214  * from AArch32.
3215  */
3216 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3217 {
3218  u8 reg_id = (esr >> 10) & 0xf;
3219  bool valid;
3220 
3221  params->is_write = ((esr & 1) == 0);
3222  params->Op0 = 3;
3223  params->Op1 = 0;
3224  params->CRn = 0;
3225  params->CRm = 3;
3226 
3227  /* CP10 ID registers are read-only */
3228  valid = !params->is_write;
3229 
3230  switch (reg_id) {
3231  /* MVFR0 */
3232  case 0b0111:
3233  params->Op2 = 0;
3234  break;
3235  /* MVFR1 */
3236  case 0b0110:
3237  params->Op2 = 1;
3238  break;
3239  /* MVFR2 */
3240  case 0b0101:
3241  params->Op2 = 2;
3242  break;
3243  default:
3244  valid = false;
3245  }
3246 
3247  if (valid)
3248  return true;
3249 
3250  kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3251  params->is_write ? "write" : "read", reg_id);
3252  return false;
3253 }
3254 
3255 /**
3256  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3257  * VFP Register' from AArch32.
3258  * @vcpu: The vCPU pointer
3259  *
3260  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3261  * Work out the correct AArch64 system register encoding and reroute to the
3262  * AArch64 system register emulation.
3263  */
3264 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3265 {
3266  int Rt = kvm_vcpu_sys_get_rt(vcpu);
3267  u64 esr = kvm_vcpu_get_esr(vcpu);
3268  struct sys_reg_params params;
3269 
3270  /* UNDEF on any unhandled register access */
3271  if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3272  kvm_inject_undefined(vcpu);
3273  return 1;
3274  }
3275 
3276  if (emulate_sys_reg(vcpu, &params))
3277  vcpu_set_reg(vcpu, Rt, params.regval);
3278 
3279  return 1;
3280 }
3281 
3282 /**
3283  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3284  * CRn=0, which corresponds to the AArch32 feature
3285  * registers.
3286  * @vcpu: the vCPU pointer
3287  * @params: the system register access parameters.
3288  *
3289  * Our cp15 system register tables do not enumerate the AArch32 feature
3290  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3291  * register encoding can be trivially remapped into the AArch64 for the feature
3292  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3293  *
3294  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3295  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3296  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3297  * treat undefined registers in this range as RAZ.
3298  */
3299 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3300  struct sys_reg_params *params)
3301 {
3302  int Rt = kvm_vcpu_sys_get_rt(vcpu);
3303 
3304  /* Treat impossible writes to RO registers as UNDEFINED */
3305  if (params->is_write) {
3306  unhandled_cp_access(vcpu, params);
3307  return 1;
3308  }
3309 
3310  params->Op0 = 3;
3311 
3312  /*
3313  * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3314  * Avoid conflicting with future expansion of AArch64 feature registers
3315  * and simply treat them as RAZ here.
3316  */
3317  if (params->CRm > 3)
3318  params->regval = 0;
3319  else if (!emulate_sys_reg(vcpu, params))
3320  return 1;
3321 
3322  vcpu_set_reg(vcpu, Rt, params->regval);
3323  return 1;
3324 }
3325 
3326 /**
3327  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3328  * @vcpu: The VCPU pointer
3329  * @run: The kvm_run struct
3330  */
3331 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3332  struct sys_reg_params *params,
3333  const struct sys_reg_desc *global,
3334  size_t nr_global)
3335 {
3336  int Rt = kvm_vcpu_sys_get_rt(vcpu);
3337 
3338  params->regval = vcpu_get_reg(vcpu, Rt);
3339 
3340  if (emulate_cp(vcpu, params, global, nr_global)) {
3341  if (!params->is_write)
3342  vcpu_set_reg(vcpu, Rt, params->regval);
3343  return 1;
3344  }
3345 
3346  unhandled_cp_access(vcpu, params);
3347  return 1;
3348 }
3349 
3350 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3351 {
3352  return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3353 }
3354 
3355 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3356 {
3357  struct sys_reg_params params;
3358 
3359  params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3360 
3361  /*
3362  * Certain AArch32 ID registers are handled by rerouting to the AArch64
3363  * system register table. Registers in the ID range where CRm=0 are
3364  * excluded from this scheme as they do not trivially map into AArch64
3365  * system register encodings.
3366  */
3367  if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3368  return kvm_emulate_cp15_id_reg(vcpu, &params);
3369 
3370  return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3371 }
3372 
3373 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3374 {
3375  return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3376 }
3377 
3378 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3379 {
3380  struct sys_reg_params params;
3381 
3382  params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3383 
3384  return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3385 }
3386 
3387 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3388 {
3389  // See ARM DDI 0487E.a, section D12.3.2
3390  return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3391 }
3392 
3393 /**
3394  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3395  * @vcpu: The VCPU pointer
3396  * @params: Decoded system register parameters
3397  *
3398  * Return: true if the system register access was successful, false otherwise.
3399  */
3400 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3401  struct sys_reg_params *params)
3402 {
3403  const struct sys_reg_desc *r;
3404 
3405  r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3406 
3407  if (likely(r)) {
3408  perform_access(vcpu, params, r);
3409  return true;
3410  }
3411 
3412  if (is_imp_def_sys_reg(params)) {
3413  kvm_inject_undefined(vcpu);
3414  } else {
3415  print_sys_reg_msg(params,
3416  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3417  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3418  kvm_inject_undefined(vcpu);
3419  }
3420  return false;
3421 }
3422 
3423 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3424 {
3425  const struct sys_reg_desc *idreg = first_idreg;
3426  u32 id = reg_to_encoding(idreg);
3427  struct kvm *kvm = vcpu->kvm;
3428 
3429  if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3430  return;
3431 
3432  lockdep_assert_held(&kvm->arch.config_lock);
3433 
3434  /* Initialize all idregs */
3435  while (is_id_reg(id)) {
3436  IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3437 
3438  idreg++;
3439  id = reg_to_encoding(idreg);
3440  }
3441 
3442  set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3443 }
3444 
3445 /**
3446  * kvm_reset_sys_regs - sets system registers to reset value
3447  * @vcpu: The VCPU pointer
3448  *
3449  * This function finds the right table above and sets the registers on the
3450  * virtual CPU struct to their architecturally defined reset values.
3451  */
3452 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3453 {
3454  unsigned long i;
3455 
3456  kvm_reset_id_regs(vcpu);
3457 
3458  for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3459  const struct sys_reg_desc *r = &sys_reg_descs[i];
3460 
3461  if (is_id_reg(reg_to_encoding(r)))
3462  continue;
3463 
3464  if (r->reset)
3465  r->reset(vcpu, r);
3466  }
3467 }
3468 
3469 /**
3470  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3471  * @vcpu: The VCPU pointer
3472  */
3473 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3474 {
3475  struct sys_reg_params params;
3476  unsigned long esr = kvm_vcpu_get_esr(vcpu);
3477  int Rt = kvm_vcpu_sys_get_rt(vcpu);
3478 
3479  trace_kvm_handle_sys_reg(esr);
3480 
3481  if (__check_nv_sr_forward(vcpu))
3482  return 1;
3483 
3484  params = esr_sys64_to_params(esr);
3485  params.regval = vcpu_get_reg(vcpu, Rt);
3486 
3487  if (!emulate_sys_reg(vcpu, &params))
3488  return 1;
3489 
3490  if (!params.is_write)
3491  vcpu_set_reg(vcpu, Rt, params.regval);
3492  return 1;
3493 }
3494 
3495 /******************************************************************************
3496  * Userspace API
3497  *****************************************************************************/
3498 
3499 static bool index_to_params(u64 id, struct sys_reg_params *params)
3500 {
3501  switch (id & KVM_REG_SIZE_MASK) {
3502  case KVM_REG_SIZE_U64:
3503  /* Any unused index bits means it's not valid. */
3504  if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3505  | KVM_REG_ARM_COPROC_MASK
3506  | KVM_REG_ARM64_SYSREG_OP0_MASK
3507  | KVM_REG_ARM64_SYSREG_OP1_MASK
3508  | KVM_REG_ARM64_SYSREG_CRN_MASK
3509  | KVM_REG_ARM64_SYSREG_CRM_MASK
3510  | KVM_REG_ARM64_SYSREG_OP2_MASK))
3511  return false;
3512  params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3513  >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3514  params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3515  >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3516  params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3517  >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3518  params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3519  >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3520  params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3521  >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3522  return true;
3523  default:
3524  return false;
3525  }
3526 }
3527 
3528 const struct sys_reg_desc *get_reg_by_id(u64 id,
3529  const struct sys_reg_desc table[],
3530  unsigned int num)
3531 {
3532  struct sys_reg_params params;
3533 
3534  if (!index_to_params(id, &params))
3535  return NULL;
3536 
3537  return find_reg(&params, table, num);
3538 }
3539 
3540 /* Decode an index value, and find the sys_reg_desc entry. */
3541 static const struct sys_reg_desc *
3542 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3543  const struct sys_reg_desc table[], unsigned int num)
3544 
3545 {
3546  const struct sys_reg_desc *r;
3547 
3548  /* We only do sys_reg for now. */
3549  if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3550  return NULL;
3551 
3552  r = get_reg_by_id(id, table, num);
3553 
3554  /* Not saved in the sys_reg array and not otherwise accessible? */
3555  if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3556  r = NULL;
3557 
3558  return r;
3559 }
3560 
3561 /*
3562  * These are the invariant sys_reg registers: we let the guest see the
3563  * host versions of these, so they're part of the guest state.
3564  *
3565  * A future CPU may provide a mechanism to present different values to
3566  * the guest, or a future kvm may trap them.
3567  */
3568 
3569 #define FUNCTION_INVARIANT(reg) \
3570  static u64 get_##reg(struct kvm_vcpu *v, \
3571  const struct sys_reg_desc *r) \
3572  { \
3573  ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
3574  return ((struct sys_reg_desc *)r)->val; \
3575  }
3576 
3577 FUNCTION_INVARIANT(midr_el1)
3578 FUNCTION_INVARIANT(revidr_el1)
3579 FUNCTION_INVARIANT(aidr_el1)
3580 
3581 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3582 {
3583  ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3584  return ((struct sys_reg_desc *)r)->val;
3585 }
3586 
3587 /* ->val is filled in by kvm_sys_reg_table_init() */
3588 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3589  { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3590  { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3591  { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3592  { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3593 };
3594 
3595 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3596 {
3597  const struct sys_reg_desc *r;
3598 
3599  r = get_reg_by_id(id, invariant_sys_regs,
3600  ARRAY_SIZE(invariant_sys_regs));
3601  if (!r)
3602  return -ENOENT;
3603 
3604  return put_user(r->val, uaddr);
3605 }
3606 
3607 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3608 {
3609  const struct sys_reg_desc *r;
3610  u64 val;
3611 
3612  r = get_reg_by_id(id, invariant_sys_regs,
3613  ARRAY_SIZE(invariant_sys_regs));
3614  if (!r)
3615  return -ENOENT;
3616 
3617  if (get_user(val, uaddr))
3618  return -EFAULT;
3619 
3620  /* This is what we mean by invariant: you can't change it. */
3621  if (r->val != val)
3622  return -EINVAL;
3623 
3624  return 0;
3625 }
3626 
3627 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3628 {
3629  u32 val;
3630  u32 __user *uval = uaddr;
3631 
3632  /* Fail if we have unknown bits set. */
3633  if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3634  | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3635  return -ENOENT;
3636 
3637  switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3638  case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3639  if (KVM_REG_SIZE(id) != 4)
3640  return -ENOENT;
3641  val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3642  >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3643  if (val >= CSSELR_MAX)
3644  return -ENOENT;
3645 
3646  return put_user(get_ccsidr(vcpu, val), uval);
3647  default:
3648  return -ENOENT;
3649  }
3650 }
3651 
3652 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3653 {
3654  u32 val, newval;
3655  u32 __user *uval = uaddr;
3656 
3657  /* Fail if we have unknown bits set. */
3658  if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3659  | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3660  return -ENOENT;
3661 
3662  switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3663  case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3664  if (KVM_REG_SIZE(id) != 4)
3665  return -ENOENT;
3666  val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3667  >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3668  if (val >= CSSELR_MAX)
3669  return -ENOENT;
3670 
3671  if (get_user(newval, uval))
3672  return -EFAULT;
3673 
3674  return set_ccsidr(vcpu, val, newval);
3675  default:
3676  return -ENOENT;
3677  }
3678 }
3679 
3680 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3681  const struct sys_reg_desc table[], unsigned int num)
3682 {
3683  u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3684  const struct sys_reg_desc *r;
3685  u64 val;
3686  int ret;
3687 
3688  r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3689  if (!r || sysreg_hidden_user(vcpu, r))
3690  return -ENOENT;
3691 
3692  if (r->get_user) {
3693  ret = (r->get_user)(vcpu, r, &val);
3694  } else {
3695  val = __vcpu_sys_reg(vcpu, r->reg);
3696  ret = 0;
3697  }
3698 
3699  if (!ret)
3700  ret = put_user(val, uaddr);
3701 
3702  return ret;
3703 }
3704 
3705 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3706 {
3707  void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3708  int err;
3709 
3710  if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3711  return demux_c15_get(vcpu, reg->id, uaddr);
3712 
3713  err = get_invariant_sys_reg(reg->id, uaddr);
3714  if (err != -ENOENT)
3715  return err;
3716 
3717  return kvm_sys_reg_get_user(vcpu, reg,
3718  sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3719 }
3720 
3721 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3722  const struct sys_reg_desc table[], unsigned int num)
3723 {
3724  u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3725  const struct sys_reg_desc *r;
3726  u64 val;
3727  int ret;
3728 
3729  if (get_user(val, uaddr))
3730  return -EFAULT;
3731 
3732  r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3733  if (!r || sysreg_hidden_user(vcpu, r))
3734  return -ENOENT;
3735 
3736  if (sysreg_user_write_ignore(vcpu, r))
3737  return 0;
3738 
3739  if (r->set_user) {
3740  ret = (r->set_user)(vcpu, r, val);
3741  } else {
3742  __vcpu_sys_reg(vcpu, r->reg) = val;
3743  ret = 0;
3744  }
3745 
3746  return ret;
3747 }
3748 
3749 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3750 {
3751  void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3752  int err;
3753 
3754  if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3755  return demux_c15_set(vcpu, reg->id, uaddr);
3756 
3757  err = set_invariant_sys_reg(reg->id, uaddr);
3758  if (err != -ENOENT)
3759  return err;
3760 
3761  return kvm_sys_reg_set_user(vcpu, reg,
3762  sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3763 }
3764 
3765 static unsigned int num_demux_regs(void)
3766 {
3767  return CSSELR_MAX;
3768 }
3769 
3770 static int write_demux_regids(u64 __user *uindices)
3771 {
3772  u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3773  unsigned int i;
3774 
3775  val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3776  for (i = 0; i < CSSELR_MAX; i++) {
3777  if (put_user(val | i, uindices))
3778  return -EFAULT;
3779  uindices++;
3780  }
3781  return 0;
3782 }
3783 
3784 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3785 {
3786  return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3787  KVM_REG_ARM64_SYSREG |
3788  (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3789  (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3790  (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3791  (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3792  (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3793 }
3794 
3795 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3796 {
3797  if (!*uind)
3798  return true;
3799 
3800  if (put_user(sys_reg_to_index(reg), *uind))
3801  return false;
3802 
3803  (*uind)++;
3804  return true;
3805 }
3806 
3807 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3808  const struct sys_reg_desc *rd,
3809  u64 __user **uind,
3810  unsigned int *total)
3811 {
3812  /*
3813  * Ignore registers we trap but don't save,
3814  * and for which no custom user accessor is provided.
3815  */
3816  if (!(rd->reg || rd->get_user))
3817  return 0;
3818 
3819  if (sysreg_hidden_user(vcpu, rd))
3820  return 0;
3821 
3822  if (!copy_reg_to_user(rd, uind))
3823  return -EFAULT;
3824 
3825  (*total)++;
3826  return 0;
3827 }
3828 
3829 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3830 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3831 {
3832  const struct sys_reg_desc *i2, *end2;
3833  unsigned int total = 0;
3834  int err;
3835 
3836  i2 = sys_reg_descs;
3837  end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3838 
3839  while (i2 != end2) {
3840  err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3841  if (err)
3842  return err;
3843  }
3844  return total;
3845 }
3846 
3847 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3848 {
3849  return ARRAY_SIZE(invariant_sys_regs)
3850  + num_demux_regs()
3851  + walk_sys_regs(vcpu, (u64 __user *)NULL);
3852 }
3853 
3854 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3855 {
3856  unsigned int i;
3857  int err;
3858 
3859  /* Then give them all the invariant registers' indices. */
3860  for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3861  if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3862  return -EFAULT;
3863  uindices++;
3864  }
3865 
3866  err = walk_sys_regs(vcpu, uindices);
3867  if (err < 0)
3868  return err;
3869  uindices += err;
3870 
3871  return write_demux_regids(uindices);
3872 }
3873 
3874 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \
3875  KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \
3876  sys_reg_Op1(r), \
3877  sys_reg_CRn(r), \
3878  sys_reg_CRm(r), \
3879  sys_reg_Op2(r))
3880 
3881 static bool is_feature_id_reg(u32 encoding)
3882 {
3883  return (sys_reg_Op0(encoding) == 3 &&
3884  (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3885  sys_reg_CRn(encoding) == 0 &&
3886  sys_reg_CRm(encoding) <= 7);
3887 }
3888 
3889 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3890 {
3891  const void *zero_page = page_to_virt(ZERO_PAGE(0));
3892  u64 __user *masks = (u64 __user *)range->addr;
3893 
3894  /* Only feature id range is supported, reserved[13] must be zero. */
3895  if (range->range ||
3896  memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3897  return -EINVAL;
3898 
3899  /* Wipe the whole thing first */
3900  if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
3901  return -EFAULT;
3902 
3903  for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3904  const struct sys_reg_desc *reg = &sys_reg_descs[i];
3905  u32 encoding = reg_to_encoding(reg);
3906  u64 val;
3907 
3908  if (!is_feature_id_reg(encoding) || !reg->set_user)
3909  continue;
3910 
3911  /*
3912  * For ID registers, we return the writable mask. Other feature
3913  * registers return a full 64bit mask. That's not necessary
3914  * compliant with a given revision of the architecture, but the
3915  * RES0/RES1 definitions allow us to do that.
3916  */
3917  if (is_id_reg(encoding)) {
3918  if (!reg->val ||
3919  (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
3920  continue;
3921  val = reg->val;
3922  } else {
3923  val = ~0UL;
3924  }
3925 
3926  if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
3927  return -EFAULT;
3928  }
3929 
3930  return 0;
3931 }
3932 
3933 int __init kvm_sys_reg_table_init(void)
3934 {
3935  struct sys_reg_params params;
3936  bool valid = true;
3937  unsigned int i;
3938 
3939  /* Make sure tables are unique and in order. */
3940  valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3941  valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3942  valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3943  valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3944  valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3945  valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3946 
3947  if (!valid)
3948  return -EINVAL;
3949 
3950  /* We abuse the reset function to overwrite the table itself. */
3951  for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3952  invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3953 
3954  /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3955  params = encoding_to_params(SYS_ID_PFR0_EL1);
3956  first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3957  if (!first_idreg)
3958  return -EINVAL;
3959 
3960  if (kvm_get_mode() == KVM_MODE_NV)
3961  return populate_nv_trap_config();
3962 
3963  return 0;
3964 }
void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, enum kvm_arch_timers tmr, enum kvm_arch_timer_regs treg, u64 val)
Definition: arch_timer.c:1219
u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, enum kvm_arch_timers tmr, enum kvm_arch_timer_regs treg)
Definition: arch_timer.c:1167
enum kvm_mode kvm_get_mode(void)
Definition: arm.c:2657
kvm_arch_timers
@ TIMER_PTIMER
kvm_arch_timer_regs
@ TIMER_REG_CTL
@ TIMER_REG_TVAL
@ TIMER_REG_CNT
@ TIMER_REG_CVAL
#define kvm_vcpu_has_pmu(vcpu)
Definition: arm_pmu.h:170
#define ARMV8_PMU_CYCLE_IDX
Definition: arm_pmu.h:13
struct vgic_global kvm_vgic_global_state
@ VGIC_V3
Definition: arm_vgic.h:40
static unsigned long cur
Definition: early_alloc.c:17
bool __check_nv_sr_forward(struct kvm_vcpu *vcpu)
int __init populate_nv_trap_config(void)
void kvm_inject_undefined(struct kvm_vcpu *vcpu)
Definition: inject_fault.c:225
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
Definition: mmu.c:2102
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
Definition: mmu.c:2123
u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
Definition: pmu-emul.c:63
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data, u64 select_idx)
Definition: pmu-emul.c:678
u8 kvm_arm_pmu_get_pmuver_limit(void)
Definition: pmu-emul.c:1121
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
Definition: pmu-emul.c:908
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
Definition: pmu-emul.c:760
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:268
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
Definition: pmu-emul.c:319
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
Definition: pmu-emul.c:285
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
Definition: pmu-emul.c:141
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
Definition: pmu-emul.c:182
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
Definition: pmu-emul.c:551
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
Definition: pmu-emul.c:541
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:1136
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu)
Definition: pmu.c:176
bool(* access)(struct kvm_vcpu *, struct sys_reg_params *, const struct sys_reg_desc *)
Definition: sys_regs.h:70
enum sys_reg_desc::@9 aarch32_map
int(* set_user)(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.h:89
int(* get_user)(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.h:87
u64(* reset)(struct kvm_vcpu *, const struct sys_reg_desc *)
Definition: sys_regs.h:78
bool is_write
Definition: sys_regs.h:27
enum vgic_type type
Definition: arm_vgic.h:46
static bool index_to_params(u64 id, struct sys_reg_params *params)
Definition: sys_regs.c:3499
static bool access_vm_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:378
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1031
static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, bool is_32)
Definition: sys_regs.c:3053
static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1604
static bool bad_vncr_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:2012
static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:1944
#define EL12_REG(name, acc, rst, v)
Definition: sys_regs.c:2061
#define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)
Definition: sys_regs.c:3874
static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:810
static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1868
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
Definition: sys_regs.c:3795
static unsigned int id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1589
static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:868
int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
Definition: sys_regs.c:3889
static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:1986
static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1878
static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:1648
static int arm64_check_features(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:1450
#define DBGBXVR(n)
Definition: sys_regs.c:2771
static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
Definition: sys_regs.c:3216
static bool read_from_write_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r)
Definition: sys_regs.c:59
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3264
static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
Definition: sys_regs.c:3607
static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
Definition: sys_regs.c:1145
static bool trap_dbgdidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:2732
static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:1862
static const struct sys_reg_desc * first_idreg
Definition: sys_regs.c:2730
static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:880
#define MAPPED_EL2_SYSREG(el2, el1, fn)
Definition: sys_regs.c:81
int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, const struct sys_reg_desc table[], unsigned int num)
Definition: sys_regs.c:3680
static void unhandled_cp_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params)
Definition: sys_regs.c:3134
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1181
static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
Definition: sys_regs.c:243
static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1618
#define PTRAUTH_KEY(k)
Definition: sys_regs.c:1364
static bool access_gic_sre(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:469
#define PMU_PMEVTYPER(n)
Definition: sys_regs.c:2884
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3473
static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1970
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.c:1796
static bool bad_redir_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:2025
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3847
static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params)
Definition: sys_regs.c:3400
#define ID_SANITISED(name)
Definition: sys_regs.c:2087
static bool trap_bcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)
Definition: sys_regs.c:691
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3378
static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
Definition: sys_regs.c:3595
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:782
static bool trap_bvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)
Definition: sys_regs.c:654
static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:551
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: sys_regs.c:3854
static bool access_elr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:2153
#define ID_UNALLOCATED(crm, op2)
Definition: sys_regs.c:2118
#define MTE_REG(name)
Definition: sys_regs.c:1995
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.c:789
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1227
static const struct sys_reg_desc sys_reg_descs[]
Definition: sys_regs.c:2188
#define EL2_REG_VNCR(name, rst, v)
Definition: sys_regs.c:2047
#define ID_WRITABLE(name, mask)
Definition: sys_regs.c:2105
#define DBG_BCR_BVR_WCR_WVR_EL1(n)
Definition: sys_regs.c:1308
#define AMU_AMEVCNTR1_EL0(n)
Definition: sys_regs.c:1345
#define EL2_REG_REDIR(name, rst, v)
Definition: sys_regs.c:2048
static u8 get_min_cache_line_size(bool icache)
Definition: sys_regs.c:221
static int write_demux_regids(u64 __user *uindices)
Definition: sys_regs.c:3770
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3373
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:920
static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:1762
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *global, size_t nr_global)
Definition: sys_regs.c:3331
static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
Definition: sys_regs.c:1015
static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:1713
static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
Definition: sys_regs.c:1120
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:565
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3073
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.c:677
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
Definition: sys_regs.c:904
static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1958
static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 __user **uind, unsigned int *total)
Definition: sys_regs.c:3807
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:925
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:980
#define PMU_PMEVTYPER_EL0(n)
Definition: sys_regs.c:1329
static bool trap_debug_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:604
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:1639
static const struct sys_reg_desc cp15_64_regs[]
Definition: sys_regs.c:3041
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.c:714
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
Definition: sys_regs.c:128
#define EL2_REG(name, acc, rst, v)
Definition: sys_regs.c:2038
static bool access_rw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:307
static bool emulate_cp(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *table, size_t num)
Definition: sys_regs.c:3113
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
Definition: sys_regs.c:3784
static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:1692
#define AMU_AMEVTYPER1_EL0(n)
Definition: sys_regs.c:1346
#define CSSELR_MAX
Definition: sys_regs.c:215
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: sys_regs.c:3749
static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
Definition: sys_regs.c:1269
static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1334
static u64 reset_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:759
static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params)
Definition: sys_regs.c:3299
static unsigned int num_demux_regs(void)
Definition: sys_regs.c:3765
static void perform_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r)
Definition: sys_regs.c:3079
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1205
static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
Definition: sys_regs.c:278
static bool get_el2_to_el1_mapping(unsigned int reg, unsigned int *el1r, u64(**xlate)(u64))
Definition: sys_regs.c:88
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:540
static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
Definition: sys_regs.c:355
static bool access_dcsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:322
static bool is_id_reg(u32 id)
Definition: sys_regs.c:1575
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:670
static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:837
static bool access_arch_timer(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1368
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1153
static bool access_gic_sgi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:424
static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1892
static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:803
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1243
static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1560
static bool is_feature_id_reg(u32 encoding)
Definition: sys_regs.c:3881
static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:2003
static u64 reset_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:721
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.c:752
static bool bad_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r, const char *msg)
Definition: sys_regs.c:48
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3355
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:1815
static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
Definition: sys_regs.c:3581
#define AMU_AMEVCNTR0_EL0(n)
Definition: sys_regs.c:1343
#define PMU_PMEVCNTR_EL0(n)
Definition: sys_regs.c:1323
static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
Definition: sys_regs.c:1412
static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
Definition: sys_regs.c:3652
int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, const struct sys_reg_desc table[], unsigned int num)
Definition: sys_regs.c:3721
static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
Definition: sys_regs.c:1262
#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)
Definition: sys_regs.c:2872
#define PMU_SYS_REG(name)
Definition: sys_regs.c:1318
static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3423
static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val)
Definition: sys_regs.c:1855
static bool access_spsr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:2165
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:707
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3452
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
Definition: sys_regs.c:3830
#define AA32_ID_SANITISED(name)
Definition: sys_regs.c:2096
static bool trap_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:480
static u8 pmuver_to_perfmon(u8 pmuver)
Definition: sys_regs.c:1503
const struct sys_reg_desc * get_reg_by_id(u64 id, const struct sys_reg_desc table[], unsigned int num)
Definition: sys_regs.c:3528
static struct sys_reg_desc invariant_sys_regs[] __ro_after_init
Definition: sys_regs.c:3588
static bool is_imp_def_sys_reg(struct sys_reg_params *params)
Definition: sys_regs.c:3387
static bool trap_wcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)
Definition: sys_regs.c:766
static const struct sys_reg_desc cp15_regs[]
Definition: sys_regs.c:2893
static void reg_to_dbg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd, u64 *dbg_reg)
Definition: sys_regs.c:626
#define DBG_BCR_BVR_WCR_WVR(n)
Definition: sys_regs.c:2761
#define FUNCTION_INVARIANT(reg)
Definition: sys_regs.c:3569
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global)
Definition: sys_regs.c:3164
static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:1747
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:915
static bool trap_wvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)
Definition: sys_regs.c:728
static void dbg_to_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd, u64 *dbg_reg)
Definition: sys_regs.c:643
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val)
Definition: sys_regs.c:745
static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1566
static bool is_aa32_id_reg(u32 id)
Definition: sys_regs.c:1582
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
Definition: sys_regs.c:1001
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
Definition: sys_regs.c:172
static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:860
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1084
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3350
#define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)
Definition: sys_regs.c:1683
static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:1517
static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:846
static const struct sys_reg_desc cp14_regs[]
Definition: sys_regs.c:2779
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:930
#define AMU_AMEVTYPER0_EL0(n)
Definition: sys_regs.c:1344
#define PMU_PMEVCNTR(n)
Definition: sys_regs.c:2878
static bool access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:1626
static bool access_sp_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:2141
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:935
static const struct sys_reg_desc cp14_64_regs[]
Definition: sys_regs.c:2864
static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:1348
static bool write_to_read_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r)
Definition: sys_regs.c:67
int __init kvm_sys_reg_table_init(void)
Definition: sys_regs.c:3933
static u64 reset_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:684
#define ID_HIDDEN(name)
Definition: sys_regs.c:2133
static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:817
static bool access_actlr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:403
#define PURE_EL2_SYSREG(el2)
Definition: sys_regs.c:75
static const struct sys_reg_desc * id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, const struct sys_reg_desc table[], unsigned int num)
Definition: sys_regs.c:3542
static bool trap_loregion(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:504
static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.c:888
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: sys_regs.c:3705
static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
Definition: sys_regs.c:3627
static bool trap_oslar_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:522
static bool trap_undef(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:490
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:964
static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:2055
static u64 reset_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
Definition: sys_regs.c:796
static bool access_dcgsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)
Definition: sys_regs.c:342
#define esr_cp1x_32_to_params(esr)
Definition: sys_regs.h:45
#define encoding_to_params(reg)
Definition: sys_regs.h:30
static bool sysreg_hidden(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.h:162
#define reg_to_encoding(x)
Definition: sys_regs.h:16
#define CRm(_x)
Definition: sys_regs.h:240
#define esr_sys64_to_params(esr)
Definition: sys_regs.h:37
static const struct sys_reg_desc * find_reg(const struct sys_reg_params *params, const struct sys_reg_desc table[], unsigned int num)
Definition: sys_regs.h:217
#define REG_RAZ
Definition: sys_regs.h:99
static bool read_zero(struct kvm_vcpu *vcpu, struct sys_reg_params *p)
Definition: sys_regs.h:128
static bool ignore_write(struct kvm_vcpu *vcpu, const struct sys_reg_params *p)
Definition: sys_regs.h:122
#define Op1(_x)
Definition: sys_regs.h:238
static bool sysreg_user_write_ignore(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.h:183
#define SYS_DESC(reg)
Definition: sys_regs.h:243
static u64 reset_val(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.h:145
static u64 reset_unknown(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.h:136
static void print_sys_reg_instr(const struct sys_reg_params *p)
Definition: sys_regs.h:116
#define Op2(_x)
Definition: sys_regs.h:241
#define REG_USER_WI
Definition: sys_regs.h:100
#define AA32(_x)
Definition: sys_regs.h:236
kvm_pr_unimpl("%pV { Op0(%2u), Op1(%2u), CRn(%2u), CRm(%2u), Op2(%2u), func_%s },\n", &(struct va_format){ fmt, &va }, p->Op0, p->Op1, p->CRn, p->CRm, p->Op2, p->is_write ? "write" :"read")
static bool sysreg_hidden_user(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.h:168
static int cmp_sys_reg(const struct sys_reg_desc *i1, const struct sys_reg_desc *i2)
Definition: sys_regs.h:189
#define REG_HIDDEN_USER
Definition: sys_regs.h:98
#define REG_HIDDEN
Definition: sys_regs.h:97
#define CRn(_x)
Definition: sys_regs.h:239
static bool sysreg_visible_as_raz(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
Definition: sys_regs.h:177
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)