KVM
arm.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51 
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54 
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56 
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
63 {
64  return kvm_arm_initialised;
65 }
66 
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69  return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71 
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73  struct kvm_enable_cap *cap)
74 {
75  int r;
76  u64 new_cap;
77 
78  if (cap->flags)
79  return -EINVAL;
80 
81  switch (cap->cap) {
82  case KVM_CAP_ARM_NISV_TO_USER:
83  r = 0;
84  set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85  &kvm->arch.flags);
86  break;
87  case KVM_CAP_ARM_MTE:
88  mutex_lock(&kvm->lock);
89  if (!system_supports_mte() || kvm->created_vcpus) {
90  r = -EINVAL;
91  } else {
92  r = 0;
93  set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94  }
95  mutex_unlock(&kvm->lock);
96  break;
97  case KVM_CAP_ARM_SYSTEM_SUSPEND:
98  r = 0;
99  set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100  break;
101  case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102  new_cap = cap->args[0];
103 
104  mutex_lock(&kvm->slots_lock);
105  /*
106  * To keep things simple, allow changing the chunk
107  * size only when no memory slots have been created.
108  */
109  if (!kvm_are_all_memslots_empty(kvm)) {
110  r = -EINVAL;
111  } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112  r = -EINVAL;
113  } else {
114  r = 0;
115  kvm->arch.mmu.split_page_chunk_size = new_cap;
116  }
117  mutex_unlock(&kvm->slots_lock);
118  break;
119  default:
120  r = -EINVAL;
121  break;
122  }
123 
124  return r;
125 }
126 
128 {
129  return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131 
132 /**
133  * kvm_arch_init_vm - initializes a VM data structure
134  * @kvm: pointer to the KVM struct
135  */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138  int ret;
139 
140  mutex_init(&kvm->arch.config_lock);
141 
142 #ifdef CONFIG_LOCKDEP
143  /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144  mutex_lock(&kvm->lock);
145  mutex_lock(&kvm->arch.config_lock);
146  mutex_unlock(&kvm->arch.config_lock);
147  mutex_unlock(&kvm->lock);
148 #endif
149 
150  ret = kvm_share_hyp(kvm, kvm + 1);
151  if (ret)
152  return ret;
153 
154  ret = pkvm_init_host_vm(kvm);
155  if (ret)
156  goto err_unshare_kvm;
157 
158  if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159  ret = -ENOMEM;
160  goto err_unshare_kvm;
161  }
162  cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163 
164  ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165  if (ret)
166  goto err_free_cpumask;
167 
168  kvm_vgic_early_init(kvm);
169 
170  kvm_timer_init_vm(kvm);
171 
172  /* The maximum number of VCPUs is limited by the host's GIC model */
173  kvm->max_vcpus = kvm_arm_default_max_vcpus();
174 
176 
177  bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178 
179  return 0;
180 
181 err_free_cpumask:
182  free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184  kvm_unshare_hyp(kvm, kvm + 1);
185  return ret;
186 }
187 
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190  return VM_FAULT_SIGBUS;
191 }
192 
193 
194 /**
195  * kvm_arch_destroy_vm - destroy the VM data structure
196  * @kvm: pointer to the KVM struct
197  */
198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200  bitmap_free(kvm->arch.pmu_filter);
201  free_cpumask_var(kvm->arch.supported_cpus);
202 
203  kvm_vgic_destroy(kvm);
204 
205  if (is_protected_kvm_enabled())
206  pkvm_destroy_hyp_vm(kvm);
207 
208  kfree(kvm->arch.mpidr_data);
209  kvm_destroy_vcpus(kvm);
210 
211  kvm_unshare_hyp(kvm, kvm + 1);
212 
214 }
215 
216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
217 {
218  int r;
219  switch (ext) {
220  case KVM_CAP_IRQCHIP:
221  r = vgic_present;
222  break;
223  case KVM_CAP_IOEVENTFD:
224  case KVM_CAP_USER_MEMORY:
225  case KVM_CAP_SYNC_MMU:
226  case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227  case KVM_CAP_ONE_REG:
228  case KVM_CAP_ARM_PSCI:
229  case KVM_CAP_ARM_PSCI_0_2:
230  case KVM_CAP_READONLY_MEM:
231  case KVM_CAP_MP_STATE:
232  case KVM_CAP_IMMEDIATE_EXIT:
233  case KVM_CAP_VCPU_EVENTS:
234  case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235  case KVM_CAP_ARM_NISV_TO_USER:
236  case KVM_CAP_ARM_INJECT_EXT_DABT:
237  case KVM_CAP_SET_GUEST_DEBUG:
238  case KVM_CAP_VCPU_ATTRIBUTES:
239  case KVM_CAP_PTP_KVM:
240  case KVM_CAP_ARM_SYSTEM_SUSPEND:
241  case KVM_CAP_IRQFD_RESAMPLE:
242  case KVM_CAP_COUNTER_OFFSET:
243  r = 1;
244  break;
245  case KVM_CAP_SET_GUEST_DEBUG2:
246  return KVM_GUESTDBG_VALID_MASK;
247  case KVM_CAP_ARM_SET_DEVICE_ADDR:
248  r = 1;
249  break;
250  case KVM_CAP_NR_VCPUS:
251  /*
252  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253  * architectures, as it does not always bound it to
254  * KVM_CAP_MAX_VCPUS. It should not matter much because
255  * this is just an advisory value.
256  */
257  r = min_t(unsigned int, num_online_cpus(),
259  break;
260  case KVM_CAP_MAX_VCPUS:
261  case KVM_CAP_MAX_VCPU_ID:
262  if (kvm)
263  r = kvm->max_vcpus;
264  else
266  break;
267  case KVM_CAP_MSI_DEVID:
268  if (!kvm)
269  r = -EINVAL;
270  else
271  r = kvm->arch.vgic.msis_require_devid;
272  break;
273  case KVM_CAP_ARM_USER_IRQ:
274  /*
275  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276  * (bump this number if adding more devices)
277  */
278  r = 1;
279  break;
280  case KVM_CAP_ARM_MTE:
281  r = system_supports_mte();
282  break;
283  case KVM_CAP_STEAL_TIME:
285  break;
286  case KVM_CAP_ARM_EL1_32BIT:
287  r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
288  break;
289  case KVM_CAP_GUEST_DEBUG_HW_BPS:
290  r = get_num_brps();
291  break;
292  case KVM_CAP_GUEST_DEBUG_HW_WPS:
293  r = get_num_wrps();
294  break;
295  case KVM_CAP_ARM_PMU_V3:
297  break;
298  case KVM_CAP_ARM_INJECT_SERROR_ESR:
299  r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
300  break;
301  case KVM_CAP_ARM_VM_IPA_SIZE:
302  r = get_kvm_ipa_limit();
303  break;
304  case KVM_CAP_ARM_SVE:
305  r = system_supports_sve();
306  break;
307  case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308  case KVM_CAP_ARM_PTRAUTH_GENERIC:
309  r = system_has_full_ptr_auth();
310  break;
311  case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312  if (kvm)
313  r = kvm->arch.mmu.split_page_chunk_size;
314  else
315  r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316  break;
317  case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318  r = kvm_supported_block_sizes();
319  break;
320  case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
321  r = BIT(0);
322  break;
323  default:
324  r = 0;
325  }
326 
327  return r;
328 }
329 
330 long kvm_arch_dev_ioctl(struct file *filp,
331  unsigned int ioctl, unsigned long arg)
332 {
333  return -EINVAL;
334 }
335 
336 struct kvm *kvm_arch_alloc_vm(void)
337 {
338  size_t sz = sizeof(struct kvm);
339 
340  if (!has_vhe())
341  return kzalloc(sz, GFP_KERNEL_ACCOUNT);
342 
343  return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
344 }
345 
346 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
347 {
348  if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
349  return -EBUSY;
350 
351  if (id >= kvm->max_vcpus)
352  return -EINVAL;
353 
354  return 0;
355 }
356 
357 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
358 {
359  int err;
360 
361  spin_lock_init(&vcpu->arch.mp_state_lock);
362 
363 #ifdef CONFIG_LOCKDEP
364  /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
365  mutex_lock(&vcpu->mutex);
366  mutex_lock(&vcpu->kvm->arch.config_lock);
367  mutex_unlock(&vcpu->kvm->arch.config_lock);
368  mutex_unlock(&vcpu->mutex);
369 #endif
370 
371  /* Force users to call KVM_ARM_VCPU_INIT */
372  vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
373 
374  vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
375 
376  /*
377  * Default value for the FP state, will be overloaded at load
378  * time if we support FP (pretty likely)
379  */
380  vcpu->arch.fp_state = FP_STATE_FREE;
381 
382  /* Set up the timer */
383  kvm_timer_vcpu_init(vcpu);
384 
385  kvm_pmu_vcpu_init(vcpu);
386 
388 
389  kvm_arm_pvtime_vcpu_init(&vcpu->arch);
390 
391  vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
392 
393  err = kvm_vgic_vcpu_init(vcpu);
394  if (err)
395  return err;
396 
397  return kvm_share_hyp(vcpu, vcpu + 1);
398 }
399 
400 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
401 {
402 }
403 
404 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
405 {
406  if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
407  static_branch_dec(&userspace_irqchip_in_use);
408 
409  kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
411  kvm_pmu_vcpu_destroy(vcpu);
412  kvm_vgic_vcpu_destroy(vcpu);
413  kvm_arm_vcpu_destroy(vcpu);
414 }
415 
416 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
417 {
418 
419 }
420 
421 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
422 {
423 
424 }
425 
426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
427 {
428  struct kvm_s2_mmu *mmu;
429  int *last_ran;
430 
431  mmu = vcpu->arch.hw_mmu;
432  last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
433 
434  /*
435  * We guarantee that both TLBs and I-cache are private to each
436  * vcpu. If detecting that a vcpu from the same VM has
437  * previously run on the same physical CPU, call into the
438  * hypervisor code to nuke the relevant contexts.
439  *
440  * We might get preempted before the vCPU actually runs, but
441  * over-invalidation doesn't affect correctness.
442  */
443  if (*last_ran != vcpu->vcpu_idx) {
444  kvm_call_hyp(__kvm_flush_cpu_context, mmu);
445  *last_ran = vcpu->vcpu_idx;
446  }
447 
448  vcpu->cpu = cpu;
449 
450  kvm_vgic_load(vcpu);
451  kvm_timer_vcpu_load(vcpu);
452  if (has_vhe())
453  kvm_vcpu_load_vhe(vcpu);
454  kvm_arch_vcpu_load_fp(vcpu);
456  if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
457  kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
458 
459  if (single_task_running())
460  vcpu_clear_wfx_traps(vcpu);
461  else
462  vcpu_set_wfx_traps(vcpu);
463 
464  if (vcpu_has_ptrauth(vcpu))
465  vcpu_ptrauth_disable(vcpu);
467 
468  if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
469  vcpu_set_on_unsupported_cpu(vcpu);
470 }
471 
472 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
473 {
475  kvm_arch_vcpu_put_fp(vcpu);
476  if (has_vhe())
477  kvm_vcpu_put_vhe(vcpu);
478  kvm_timer_vcpu_put(vcpu);
479  kvm_vgic_put(vcpu);
482 
483  vcpu_clear_on_unsupported_cpu(vcpu);
484  vcpu->cpu = -1;
485 }
486 
487 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
488 {
489  WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
490  kvm_make_request(KVM_REQ_SLEEP, vcpu);
491  kvm_vcpu_kick(vcpu);
492 }
493 
494 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
495 {
496  spin_lock(&vcpu->arch.mp_state_lock);
498  spin_unlock(&vcpu->arch.mp_state_lock);
499 }
500 
501 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
502 {
503  return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
504 }
505 
506 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
507 {
508  WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
509  kvm_make_request(KVM_REQ_SUSPEND, vcpu);
510  kvm_vcpu_kick(vcpu);
511 }
512 
513 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
514 {
515  return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
516 }
517 
518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519  struct kvm_mp_state *mp_state)
520 {
521  *mp_state = READ_ONCE(vcpu->arch.mp_state);
522 
523  return 0;
524 }
525 
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
527  struct kvm_mp_state *mp_state)
528 {
529  int ret = 0;
530 
531  spin_lock(&vcpu->arch.mp_state_lock);
532 
533  switch (mp_state->mp_state) {
534  case KVM_MP_STATE_RUNNABLE:
535  WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
536  break;
537  case KVM_MP_STATE_STOPPED:
539  break;
540  case KVM_MP_STATE_SUSPENDED:
541  kvm_arm_vcpu_suspend(vcpu);
542  break;
543  default:
544  ret = -EINVAL;
545  }
546 
547  spin_unlock(&vcpu->arch.mp_state_lock);
548 
549  return ret;
550 }
551 
552 /**
553  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
554  * @v: The VCPU pointer
555  *
556  * If the guest CPU is not waiting for interrupts or an interrupt line is
557  * asserted, the CPU is by definition runnable.
558  */
559 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
560 {
561  bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
562  return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
563  && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
564 }
565 
566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
567 {
568  return vcpu_mode_priv(vcpu);
569 }
570 
571 #ifdef CONFIG_GUEST_PERF_EVENTS
572 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
573 {
574  return *vcpu_pc(vcpu);
575 }
576 #endif
577 
578 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
579 {
580  return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
581 }
582 
583 static void kvm_init_mpidr_data(struct kvm *kvm)
584 {
585  struct kvm_mpidr_data *data = NULL;
586  unsigned long c, mask, nr_entries;
587  u64 aff_set = 0, aff_clr = ~0UL;
588  struct kvm_vcpu *vcpu;
589 
590  mutex_lock(&kvm->arch.config_lock);
591 
592  if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
593  goto out;
594 
595  kvm_for_each_vcpu(c, vcpu, kvm) {
596  u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
597  aff_set |= aff;
598  aff_clr &= aff;
599  }
600 
601  /*
602  * A significant bit can be either 0 or 1, and will only appear in
603  * aff_set. Use aff_clr to weed out the useless stuff.
604  */
605  mask = aff_set ^ aff_clr;
606  nr_entries = BIT_ULL(hweight_long(mask));
607 
608  /*
609  * Don't let userspace fool us. If we need more than a single page
610  * to describe the compressed MPIDR array, just fall back to the
611  * iterative method. Single vcpu VMs do not need this either.
612  */
613  if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
614  data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
615  GFP_KERNEL_ACCOUNT);
616 
617  if (!data)
618  goto out;
619 
620  data->mpidr_mask = mask;
621 
622  kvm_for_each_vcpu(c, vcpu, kvm) {
623  u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
624  u16 index = kvm_mpidr_index(data, aff);
625 
626  data->cmpidr_to_idx[index] = c;
627  }
628 
629  kvm->arch.mpidr_data = data;
630 out:
631  mutex_unlock(&kvm->arch.config_lock);
632 }
633 
634 /*
635  * Handle both the initialisation that is being done when the vcpu is
636  * run for the first time, as well as the updates that must be
637  * performed each time we get a new thread dealing with this vcpu.
638  */
639 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
640 {
641  struct kvm *kvm = vcpu->kvm;
642  int ret;
643 
644  if (!kvm_vcpu_initialized(vcpu))
645  return -ENOEXEC;
646 
647  if (!kvm_arm_vcpu_is_finalized(vcpu))
648  return -EPERM;
649 
650  ret = kvm_arch_vcpu_run_map_fp(vcpu);
651  if (ret)
652  return ret;
653 
654  if (likely(vcpu_has_run_once(vcpu)))
655  return 0;
656 
657  kvm_init_mpidr_data(kvm);
658 
660 
661  if (likely(irqchip_in_kernel(kvm))) {
662  /*
663  * Map the VGIC hardware resources before running a vcpu the
664  * first time on this VM.
665  */
666  ret = kvm_vgic_map_resources(kvm);
667  if (ret)
668  return ret;
669  }
670 
671  if (vcpu_has_nv(vcpu)) {
672  ret = kvm_init_nv_sysregs(vcpu->kvm);
673  if (ret)
674  return ret;
675  }
676 
677  ret = kvm_timer_enable(vcpu);
678  if (ret)
679  return ret;
680 
681  ret = kvm_arm_pmu_v3_enable(vcpu);
682  if (ret)
683  return ret;
684 
685  if (is_protected_kvm_enabled()) {
686  ret = pkvm_create_hyp_vm(kvm);
687  if (ret)
688  return ret;
689  }
690 
691  if (!irqchip_in_kernel(kvm)) {
692  /*
693  * Tell the rest of the code that there are userspace irqchip
694  * VMs in the wild.
695  */
696  static_branch_inc(&userspace_irqchip_in_use);
697  }
698 
699  /*
700  * Initialize traps for protected VMs.
701  * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
702  * the code is in place for first run initialization at EL2.
703  */
704  if (kvm_vm_is_protected(kvm))
705  kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
706 
707  mutex_lock(&kvm->arch.config_lock);
708  set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
709  mutex_unlock(&kvm->arch.config_lock);
710 
711  return ret;
712 }
713 
714 bool kvm_arch_intc_initialized(struct kvm *kvm)
715 {
716  return vgic_initialized(kvm);
717 }
718 
719 void kvm_arm_halt_guest(struct kvm *kvm)
720 {
721  unsigned long i;
722  struct kvm_vcpu *vcpu;
723 
724  kvm_for_each_vcpu(i, vcpu, kvm)
725  vcpu->arch.pause = true;
726  kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
727 }
728 
729 void kvm_arm_resume_guest(struct kvm *kvm)
730 {
731  unsigned long i;
732  struct kvm_vcpu *vcpu;
733 
734  kvm_for_each_vcpu(i, vcpu, kvm) {
735  vcpu->arch.pause = false;
736  __kvm_vcpu_wake_up(vcpu);
737  }
738 }
739 
740 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
741 {
742  struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
743 
744  rcuwait_wait_event(wait,
745  (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
746  TASK_INTERRUPTIBLE);
747 
748  if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
749  /* Awaken to handle a signal, request we sleep again later. */
750  kvm_make_request(KVM_REQ_SLEEP, vcpu);
751  }
752 
753  /*
754  * Make sure we will observe a potential reset request if we've
755  * observed a change to the power state. Pairs with the smp_wmb() in
756  * kvm_psci_vcpu_on().
757  */
758  smp_rmb();
759 }
760 
761 /**
762  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
763  * @vcpu: The VCPU pointer
764  *
765  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
766  * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
767  * on when a wake event arrives, e.g. there may already be a pending wake event.
768  */
769 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
770 {
771  /*
772  * Sync back the state of the GIC CPU interface so that we have
773  * the latest PMR and group enables. This ensures that
774  * kvm_arch_vcpu_runnable has up-to-date data to decide whether
775  * we have pending interrupts, e.g. when determining if the
776  * vCPU should block.
777  *
778  * For the same reason, we want to tell GICv4 that we need
779  * doorbells to be signalled, should an interrupt become pending.
780  */
781  preempt_disable();
782  kvm_vgic_vmcr_sync(vcpu);
783  vcpu_set_flag(vcpu, IN_WFI);
784  vgic_v4_put(vcpu);
785  preempt_enable();
786 
787  kvm_vcpu_halt(vcpu);
788  vcpu_clear_flag(vcpu, IN_WFIT);
789 
790  preempt_disable();
791  vcpu_clear_flag(vcpu, IN_WFI);
792  vgic_v4_load(vcpu);
793  preempt_enable();
794 }
795 
796 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
797 {
798  if (!kvm_arm_vcpu_suspended(vcpu))
799  return 1;
800 
801  kvm_vcpu_wfi(vcpu);
802 
803  /*
804  * The suspend state is sticky; we do not leave it until userspace
805  * explicitly marks the vCPU as runnable. Request that we suspend again
806  * later.
807  */
808  kvm_make_request(KVM_REQ_SUSPEND, vcpu);
809 
810  /*
811  * Check to make sure the vCPU is actually runnable. If so, exit to
812  * userspace informing it of the wakeup condition.
813  */
814  if (kvm_arch_vcpu_runnable(vcpu)) {
815  memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
816  vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
817  vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
818  return 0;
819  }
820 
821  /*
822  * Otherwise, we were unblocked to process a different event, such as a
823  * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
824  * process the event.
825  */
826  return 1;
827 }
828 
829 /**
830  * check_vcpu_requests - check and handle pending vCPU requests
831  * @vcpu: the VCPU pointer
832  *
833  * Return: 1 if we should enter the guest
834  * 0 if we should exit to userspace
835  * < 0 if we should exit to userspace, where the return value indicates
836  * an error
837  */
838 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
839 {
840  if (kvm_request_pending(vcpu)) {
841  if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
842  kvm_vcpu_sleep(vcpu);
843 
844  if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
845  kvm_reset_vcpu(vcpu);
846 
847  /*
848  * Clear IRQ_PENDING requests that were made to guarantee
849  * that a VCPU sees new virtual interrupts.
850  */
851  kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
852 
853  if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
855 
856  if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
857  /* The distributor enable bits were changed */
858  preempt_disable();
859  vgic_v4_put(vcpu);
860  vgic_v4_load(vcpu);
861  preempt_enable();
862  }
863 
864  if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
865  kvm_vcpu_reload_pmu(vcpu);
866 
867  if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
869 
870  if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
871  return kvm_vcpu_suspend(vcpu);
872 
874  return 0;
875  }
876 
877  return 1;
878 }
879 
880 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
881 {
882  if (likely(!vcpu_mode_is_32bit(vcpu)))
883  return false;
884 
885  if (vcpu_has_nv(vcpu))
886  return true;
887 
888  return !kvm_supports_32bit_el0();
889 }
890 
891 /**
892  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
893  * @vcpu: The VCPU pointer
894  * @ret: Pointer to write optional return code
895  *
896  * Returns: true if the VCPU needs to return to a preemptible + interruptible
897  * and skip guest entry.
898  *
899  * This function disambiguates between two different types of exits: exits to a
900  * preemptible + interruptible kernel context and exits to userspace. For an
901  * exit to userspace, this function will write the return code to ret and return
902  * true. For an exit to preemptible + interruptible kernel context (i.e. check
903  * for pending work and re-enter), return true without writing to ret.
904  */
905 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
906 {
907  struct kvm_run *run = vcpu->run;
908 
909  /*
910  * If we're using a userspace irqchip, then check if we need
911  * to tell a userspace irqchip about timer or PMU level
912  * changes and if so, exit to userspace (the actual level
913  * state gets updated in kvm_timer_update_run and
914  * kvm_pmu_update_run below).
915  */
916  if (static_branch_unlikely(&userspace_irqchip_in_use)) {
917  if (kvm_timer_should_notify_user(vcpu) ||
919  *ret = -EINTR;
920  run->exit_reason = KVM_EXIT_INTR;
921  return true;
922  }
923  }
924 
925  if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
926  run->exit_reason = KVM_EXIT_FAIL_ENTRY;
927  run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
928  run->fail_entry.cpu = smp_processor_id();
929  *ret = 0;
930  return true;
931  }
932 
933  return kvm_request_pending(vcpu) ||
934  xfer_to_guest_mode_work_pending();
935 }
936 
937 /*
938  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
939  * the vCPU is running.
940  *
941  * This must be noinstr as instrumentation may make use of RCU, and this is not
942  * safe during the EQS.
943  */
944 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
945 {
946  int ret;
947 
948  guest_state_enter_irqoff();
949  ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
950  guest_state_exit_irqoff();
951 
952  return ret;
953 }
954 
955 /**
956  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
957  * @vcpu: The VCPU pointer
958  *
959  * This function is called through the VCPU_RUN ioctl called from user space. It
960  * will execute VM code in a loop until the time slice for the process is used
961  * or some emulation is needed from user space in which case the function will
962  * return with return value 0 and with the kvm_run structure filled in with the
963  * required data for the requested emulation.
964  */
965 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
966 {
967  struct kvm_run *run = vcpu->run;
968  int ret;
969 
970  if (run->exit_reason == KVM_EXIT_MMIO) {
971  ret = kvm_handle_mmio_return(vcpu);
972  if (ret)
973  return ret;
974  }
975 
976  vcpu_load(vcpu);
977 
978  if (run->immediate_exit) {
979  ret = -EINTR;
980  goto out;
981  }
982 
983  kvm_sigset_activate(vcpu);
984 
985  ret = 1;
986  run->exit_reason = KVM_EXIT_UNKNOWN;
987  run->flags = 0;
988  while (ret > 0) {
989  /*
990  * Check conditions before entering the guest
991  */
992  ret = xfer_to_guest_mode_handle_work(vcpu);
993  if (!ret)
994  ret = 1;
995 
996  if (ret > 0)
997  ret = check_vcpu_requests(vcpu);
998 
999  /*
1000  * Preparing the interrupts to be injected also
1001  * involves poking the GIC, which must be done in a
1002  * non-preemptible context.
1003  */
1004  preempt_disable();
1005 
1006  /*
1007  * The VMID allocator only tracks active VMIDs per
1008  * physical CPU, and therefore the VMID allocated may not be
1009  * preserved on VMID roll-over if the task was preempted,
1010  * making a thread's VMID inactive. So we need to call
1011  * kvm_arm_vmid_update() in non-premptible context.
1012  */
1013  if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1014  has_vhe())
1015  __load_stage2(vcpu->arch.hw_mmu,
1016  vcpu->arch.hw_mmu->arch);
1017 
1018  kvm_pmu_flush_hwstate(vcpu);
1019 
1020  local_irq_disable();
1021 
1022  kvm_vgic_flush_hwstate(vcpu);
1023 
1025 
1026  /*
1027  * Ensure we set mode to IN_GUEST_MODE after we disable
1028  * interrupts and before the final VCPU requests check.
1029  * See the comment in kvm_vcpu_exiting_guest_mode() and
1030  * Documentation/virt/kvm/vcpu-requests.rst
1031  */
1032  smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1033 
1034  if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1035  vcpu->mode = OUTSIDE_GUEST_MODE;
1036  isb(); /* Ensure work in x_flush_hwstate is committed */
1037  kvm_pmu_sync_hwstate(vcpu);
1038  if (static_branch_unlikely(&userspace_irqchip_in_use))
1039  kvm_timer_sync_user(vcpu);
1040  kvm_vgic_sync_hwstate(vcpu);
1041  local_irq_enable();
1042  preempt_enable();
1043  continue;
1044  }
1045 
1046  kvm_arm_setup_debug(vcpu);
1048 
1049  /**************************************************************
1050  * Enter the guest
1051  */
1052  trace_kvm_entry(*vcpu_pc(vcpu));
1053  guest_timing_enter_irqoff();
1054 
1055  ret = kvm_arm_vcpu_enter_exit(vcpu);
1056 
1057  vcpu->mode = OUTSIDE_GUEST_MODE;
1058  vcpu->stat.exits++;
1059  /*
1060  * Back from guest
1061  *************************************************************/
1062 
1063  kvm_arm_clear_debug(vcpu);
1064 
1065  /*
1066  * We must sync the PMU state before the vgic state so
1067  * that the vgic can properly sample the updated state of the
1068  * interrupt line.
1069  */
1070  kvm_pmu_sync_hwstate(vcpu);
1071 
1072  /*
1073  * Sync the vgic state before syncing the timer state because
1074  * the timer code needs to know if the virtual timer
1075  * interrupts are active.
1076  */
1077  kvm_vgic_sync_hwstate(vcpu);
1078 
1079  /*
1080  * Sync the timer hardware state before enabling interrupts as
1081  * we don't want vtimer interrupts to race with syncing the
1082  * timer virtual interrupt state.
1083  */
1084  if (static_branch_unlikely(&userspace_irqchip_in_use))
1085  kvm_timer_sync_user(vcpu);
1086 
1088 
1089  /*
1090  * We must ensure that any pending interrupts are taken before
1091  * we exit guest timing so that timer ticks are accounted as
1092  * guest time. Transiently unmask interrupts so that any
1093  * pending interrupts are taken.
1094  *
1095  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1096  * context synchronization event) is necessary to ensure that
1097  * pending interrupts are taken.
1098  */
1099  if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1100  local_irq_enable();
1101  isb();
1102  local_irq_disable();
1103  }
1104 
1105  guest_timing_exit_irqoff();
1106 
1107  local_irq_enable();
1108 
1109  trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1110 
1111  /* Exit types that need handling before we can be preempted */
1112  handle_exit_early(vcpu, ret);
1113 
1114  preempt_enable();
1115 
1116  /*
1117  * The ARMv8 architecture doesn't give the hypervisor
1118  * a mechanism to prevent a guest from dropping to AArch32 EL0
1119  * if implemented by the CPU. If we spot the guest in such
1120  * state and that we decided it wasn't supposed to do so (like
1121  * with the asymmetric AArch32 case), return to userspace with
1122  * a fatal error.
1123  */
1124  if (vcpu_mode_is_bad_32bit(vcpu)) {
1125  /*
1126  * As we have caught the guest red-handed, decide that
1127  * it isn't fit for purpose anymore by making the vcpu
1128  * invalid. The VMM can try and fix it by issuing a
1129  * KVM_ARM_VCPU_INIT if it really wants to.
1130  */
1131  vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1132  ret = ARM_EXCEPTION_IL;
1133  }
1134 
1135  ret = handle_exit(vcpu, ret);
1136  }
1137 
1138  /* Tell userspace about in-kernel device output levels */
1139  if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1140  kvm_timer_update_run(vcpu);
1141  kvm_pmu_update_run(vcpu);
1142  }
1143 
1144  kvm_sigset_deactivate(vcpu);
1145 
1146 out:
1147  /*
1148  * In the unlikely event that we are returning to userspace
1149  * with pending exceptions or PC adjustment, commit these
1150  * adjustments in order to give userspace a consistent view of
1151  * the vcpu state. Note that this relies on __kvm_adjust_pc()
1152  * being preempt-safe on VHE.
1153  */
1154  if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1155  vcpu_get_flag(vcpu, INCREMENT_PC)))
1156  kvm_call_hyp(__kvm_adjust_pc, vcpu);
1157 
1158  vcpu_put(vcpu);
1159  return ret;
1160 }
1161 
1162 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1163 {
1164  int bit_index;
1165  bool set;
1166  unsigned long *hcr;
1167 
1168  if (number == KVM_ARM_IRQ_CPU_IRQ)
1169  bit_index = __ffs(HCR_VI);
1170  else /* KVM_ARM_IRQ_CPU_FIQ */
1171  bit_index = __ffs(HCR_VF);
1172 
1173  hcr = vcpu_hcr(vcpu);
1174  if (level)
1175  set = test_and_set_bit(bit_index, hcr);
1176  else
1177  set = test_and_clear_bit(bit_index, hcr);
1178 
1179  /*
1180  * If we didn't change anything, no need to wake up or kick other CPUs
1181  */
1182  if (set == level)
1183  return 0;
1184 
1185  /*
1186  * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1187  * trigger a world-switch round on the running physical CPU to set the
1188  * virtual IRQ/FIQ fields in the HCR appropriately.
1189  */
1190  kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1191  kvm_vcpu_kick(vcpu);
1192 
1193  return 0;
1194 }
1195 
1196 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1197  bool line_status)
1198 {
1199  u32 irq = irq_level->irq;
1200  unsigned int irq_type, vcpu_id, irq_num;
1201  struct kvm_vcpu *vcpu = NULL;
1202  bool level = irq_level->level;
1203 
1204  irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1205  vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1206  vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1207  irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1208 
1209  trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1210 
1211  switch (irq_type) {
1212  case KVM_ARM_IRQ_TYPE_CPU:
1213  if (irqchip_in_kernel(kvm))
1214  return -ENXIO;
1215 
1216  vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1217  if (!vcpu)
1218  return -EINVAL;
1219 
1220  if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1221  return -EINVAL;
1222 
1223  return vcpu_interrupt_line(vcpu, irq_num, level);
1224  case KVM_ARM_IRQ_TYPE_PPI:
1225  if (!irqchip_in_kernel(kvm))
1226  return -ENXIO;
1227 
1228  vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1229  if (!vcpu)
1230  return -EINVAL;
1231 
1232  if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1233  return -EINVAL;
1234 
1235  return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1236  case KVM_ARM_IRQ_TYPE_SPI:
1237  if (!irqchip_in_kernel(kvm))
1238  return -ENXIO;
1239 
1240  if (irq_num < VGIC_NR_PRIVATE_IRQS)
1241  return -EINVAL;
1242 
1243  return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1244  }
1245 
1246  return -EINVAL;
1247 }
1248 
1249 static unsigned long system_supported_vcpu_features(void)
1250 {
1251  unsigned long features = KVM_VCPU_VALID_FEATURES;
1252 
1253  if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1254  clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1255 
1256  if (!kvm_arm_support_pmu_v3())
1257  clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1258 
1259  if (!system_supports_sve())
1260  clear_bit(KVM_ARM_VCPU_SVE, &features);
1261 
1262  if (!system_has_full_ptr_auth()) {
1263  clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1264  clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1265  }
1266 
1267  if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1268  clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1269 
1270  return features;
1271 }
1272 
1273 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1274  const struct kvm_vcpu_init *init)
1275 {
1276  unsigned long features = init->features[0];
1277  int i;
1278 
1279  if (features & ~KVM_VCPU_VALID_FEATURES)
1280  return -ENOENT;
1281 
1282  for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1283  if (init->features[i])
1284  return -ENOENT;
1285  }
1286 
1287  if (features & ~system_supported_vcpu_features())
1288  return -EINVAL;
1289 
1290  /*
1291  * For now make sure that both address/generic pointer authentication
1292  * features are requested by the userspace together.
1293  */
1294  if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1295  test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1296  return -EINVAL;
1297 
1298  /* Disallow NV+SVE for the time being */
1299  if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1300  test_bit(KVM_ARM_VCPU_SVE, &features))
1301  return -EINVAL;
1302 
1303  if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1304  return 0;
1305 
1306  /* MTE is incompatible with AArch32 */
1307  if (kvm_has_mte(vcpu->kvm))
1308  return -EINVAL;
1309 
1310  /* NV is incompatible with AArch32 */
1311  if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1312  return -EINVAL;
1313 
1314  return 0;
1315 }
1316 
1317 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1318  const struct kvm_vcpu_init *init)
1319 {
1320  unsigned long features = init->features[0];
1321 
1322  return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1323  KVM_VCPU_MAX_FEATURES);
1324 }
1325 
1326 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1327 {
1328  struct kvm *kvm = vcpu->kvm;
1329  int ret = 0;
1330 
1331  /*
1332  * When the vCPU has a PMU, but no PMU is set for the guest
1333  * yet, set the default one.
1334  */
1335  if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1336  ret = kvm_arm_set_default_pmu(kvm);
1337 
1338  return ret;
1339 }
1340 
1341 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1342  const struct kvm_vcpu_init *init)
1343 {
1344  unsigned long features = init->features[0];
1345  struct kvm *kvm = vcpu->kvm;
1346  int ret = -EINVAL;
1347 
1348  mutex_lock(&kvm->arch.config_lock);
1349 
1350  if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1351  kvm_vcpu_init_changed(vcpu, init))
1352  goto out_unlock;
1353 
1354  bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1355 
1356  ret = kvm_setup_vcpu(vcpu);
1357  if (ret)
1358  goto out_unlock;
1359 
1360  /* Now we know what it is, we can reset it. */
1361  kvm_reset_vcpu(vcpu);
1362 
1363  set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1364  vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1365  ret = 0;
1366 out_unlock:
1367  mutex_unlock(&kvm->arch.config_lock);
1368  return ret;
1369 }
1370 
1371 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1372  const struct kvm_vcpu_init *init)
1373 {
1374  int ret;
1375 
1376  if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1377  init->target != kvm_target_cpu())
1378  return -EINVAL;
1379 
1380  ret = kvm_vcpu_init_check_features(vcpu, init);
1381  if (ret)
1382  return ret;
1383 
1384  if (!kvm_vcpu_initialized(vcpu))
1385  return __kvm_vcpu_set_target(vcpu, init);
1386 
1387  if (kvm_vcpu_init_changed(vcpu, init))
1388  return -EINVAL;
1389 
1390  kvm_reset_vcpu(vcpu);
1391  return 0;
1392 }
1393 
1394 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1395  struct kvm_vcpu_init *init)
1396 {
1397  bool power_off = false;
1398  int ret;
1399 
1400  /*
1401  * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1402  * reflecting it in the finalized feature set, thus limiting its scope
1403  * to a single KVM_ARM_VCPU_INIT call.
1404  */
1405  if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1406  init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1407  power_off = true;
1408  }
1409 
1410  ret = kvm_vcpu_set_target(vcpu, init);
1411  if (ret)
1412  return ret;
1413 
1414  /*
1415  * Ensure a rebooted VM will fault in RAM pages and detect if the
1416  * guest MMU is turned off and flush the caches as needed.
1417  *
1418  * S2FWB enforces all memory accesses to RAM being cacheable,
1419  * ensuring that the data side is always coherent. We still
1420  * need to invalidate the I-cache though, as FWB does *not*
1421  * imply CTR_EL0.DIC.
1422  */
1423  if (vcpu_has_run_once(vcpu)) {
1424  if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1425  stage2_unmap_vm(vcpu->kvm);
1426  else
1427  icache_inval_all_pou();
1428  }
1429 
1430  vcpu_reset_hcr(vcpu);
1431  vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1432 
1433  /*
1434  * Handle the "start in power-off" case.
1435  */
1436  spin_lock(&vcpu->arch.mp_state_lock);
1437 
1438  if (power_off)
1440  else
1441  WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1442 
1443  spin_unlock(&vcpu->arch.mp_state_lock);
1444 
1445  return 0;
1446 }
1447 
1448 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1449  struct kvm_device_attr *attr)
1450 {
1451  int ret = -ENXIO;
1452 
1453  switch (attr->group) {
1454  default:
1455  ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1456  break;
1457  }
1458 
1459  return ret;
1460 }
1461 
1462 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1463  struct kvm_device_attr *attr)
1464 {
1465  int ret = -ENXIO;
1466 
1467  switch (attr->group) {
1468  default:
1469  ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1470  break;
1471  }
1472 
1473  return ret;
1474 }
1475 
1476 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1477  struct kvm_device_attr *attr)
1478 {
1479  int ret = -ENXIO;
1480 
1481  switch (attr->group) {
1482  default:
1483  ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1484  break;
1485  }
1486 
1487  return ret;
1488 }
1489 
1490 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1491  struct kvm_vcpu_events *events)
1492 {
1493  memset(events, 0, sizeof(*events));
1494 
1495  return __kvm_arm_vcpu_get_events(vcpu, events);
1496 }
1497 
1498 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1499  struct kvm_vcpu_events *events)
1500 {
1501  int i;
1502 
1503  /* check whether the reserved field is zero */
1504  for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1505  if (events->reserved[i])
1506  return -EINVAL;
1507 
1508  /* check whether the pad field is zero */
1509  for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1510  if (events->exception.pad[i])
1511  return -EINVAL;
1512 
1513  return __kvm_arm_vcpu_set_events(vcpu, events);
1514 }
1515 
1516 long kvm_arch_vcpu_ioctl(struct file *filp,
1517  unsigned int ioctl, unsigned long arg)
1518 {
1519  struct kvm_vcpu *vcpu = filp->private_data;
1520  void __user *argp = (void __user *)arg;
1521  struct kvm_device_attr attr;
1522  long r;
1523 
1524  switch (ioctl) {
1525  case KVM_ARM_VCPU_INIT: {
1526  struct kvm_vcpu_init init;
1527 
1528  r = -EFAULT;
1529  if (copy_from_user(&init, argp, sizeof(init)))
1530  break;
1531 
1532  r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1533  break;
1534  }
1535  case KVM_SET_ONE_REG:
1536  case KVM_GET_ONE_REG: {
1537  struct kvm_one_reg reg;
1538 
1539  r = -ENOEXEC;
1540  if (unlikely(!kvm_vcpu_initialized(vcpu)))
1541  break;
1542 
1543  r = -EFAULT;
1544  if (copy_from_user(&reg, argp, sizeof(reg)))
1545  break;
1546 
1547  /*
1548  * We could owe a reset due to PSCI. Handle the pending reset
1549  * here to ensure userspace register accesses are ordered after
1550  * the reset.
1551  */
1552  if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1553  kvm_reset_vcpu(vcpu);
1554 
1555  if (ioctl == KVM_SET_ONE_REG)
1556  r = kvm_arm_set_reg(vcpu, &reg);
1557  else
1558  r = kvm_arm_get_reg(vcpu, &reg);
1559  break;
1560  }
1561  case KVM_GET_REG_LIST: {
1562  struct kvm_reg_list __user *user_list = argp;
1563  struct kvm_reg_list reg_list;
1564  unsigned n;
1565 
1566  r = -ENOEXEC;
1567  if (unlikely(!kvm_vcpu_initialized(vcpu)))
1568  break;
1569 
1570  r = -EPERM;
1571  if (!kvm_arm_vcpu_is_finalized(vcpu))
1572  break;
1573 
1574  r = -EFAULT;
1575  if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1576  break;
1577  n = reg_list.n;
1578  reg_list.n = kvm_arm_num_regs(vcpu);
1579  if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1580  break;
1581  r = -E2BIG;
1582  if (n < reg_list.n)
1583  break;
1584  r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1585  break;
1586  }
1587  case KVM_SET_DEVICE_ATTR: {
1588  r = -EFAULT;
1589  if (copy_from_user(&attr, argp, sizeof(attr)))
1590  break;
1591  r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1592  break;
1593  }
1594  case KVM_GET_DEVICE_ATTR: {
1595  r = -EFAULT;
1596  if (copy_from_user(&attr, argp, sizeof(attr)))
1597  break;
1598  r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1599  break;
1600  }
1601  case KVM_HAS_DEVICE_ATTR: {
1602  r = -EFAULT;
1603  if (copy_from_user(&attr, argp, sizeof(attr)))
1604  break;
1605  r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1606  break;
1607  }
1608  case KVM_GET_VCPU_EVENTS: {
1609  struct kvm_vcpu_events events;
1610 
1611  if (kvm_arm_vcpu_get_events(vcpu, &events))
1612  return -EINVAL;
1613 
1614  if (copy_to_user(argp, &events, sizeof(events)))
1615  return -EFAULT;
1616 
1617  return 0;
1618  }
1619  case KVM_SET_VCPU_EVENTS: {
1620  struct kvm_vcpu_events events;
1621 
1622  if (copy_from_user(&events, argp, sizeof(events)))
1623  return -EFAULT;
1624 
1625  return kvm_arm_vcpu_set_events(vcpu, &events);
1626  }
1627  case KVM_ARM_VCPU_FINALIZE: {
1628  int what;
1629 
1630  if (!kvm_vcpu_initialized(vcpu))
1631  return -ENOEXEC;
1632 
1633  if (get_user(what, (const int __user *)argp))
1634  return -EFAULT;
1635 
1636  return kvm_arm_vcpu_finalize(vcpu, what);
1637  }
1638  default:
1639  r = -EINVAL;
1640  }
1641 
1642  return r;
1643 }
1644 
1645 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1646 {
1647 
1648 }
1649 
1650 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1651  struct kvm_arm_device_addr *dev_addr)
1652 {
1653  switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1654  case KVM_ARM_DEVICE_VGIC_V2:
1655  if (!vgic_present)
1656  return -ENXIO;
1657  return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1658  default:
1659  return -ENODEV;
1660  }
1661 }
1662 
1663 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1664 {
1665  switch (attr->group) {
1666  case KVM_ARM_VM_SMCCC_CTRL:
1667  return kvm_vm_smccc_has_attr(kvm, attr);
1668  default:
1669  return -ENXIO;
1670  }
1671 }
1672 
1673 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1674 {
1675  switch (attr->group) {
1676  case KVM_ARM_VM_SMCCC_CTRL:
1677  return kvm_vm_smccc_set_attr(kvm, attr);
1678  default:
1679  return -ENXIO;
1680  }
1681 }
1682 
1683 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1684 {
1685  struct kvm *kvm = filp->private_data;
1686  void __user *argp = (void __user *)arg;
1687  struct kvm_device_attr attr;
1688 
1689  switch (ioctl) {
1690  case KVM_CREATE_IRQCHIP: {
1691  int ret;
1692  if (!vgic_present)
1693  return -ENXIO;
1694  mutex_lock(&kvm->lock);
1695  ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1696  mutex_unlock(&kvm->lock);
1697  return ret;
1698  }
1699  case KVM_ARM_SET_DEVICE_ADDR: {
1700  struct kvm_arm_device_addr dev_addr;
1701 
1702  if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1703  return -EFAULT;
1704  return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1705  }
1706  case KVM_ARM_PREFERRED_TARGET: {
1707  struct kvm_vcpu_init init = {
1708  .target = KVM_ARM_TARGET_GENERIC_V8,
1709  };
1710 
1711  if (copy_to_user(argp, &init, sizeof(init)))
1712  return -EFAULT;
1713 
1714  return 0;
1715  }
1716  case KVM_ARM_MTE_COPY_TAGS: {
1717  struct kvm_arm_copy_mte_tags copy_tags;
1718 
1719  if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1720  return -EFAULT;
1721  return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1722  }
1723  case KVM_ARM_SET_COUNTER_OFFSET: {
1724  struct kvm_arm_counter_offset offset;
1725 
1726  if (copy_from_user(&offset, argp, sizeof(offset)))
1727  return -EFAULT;
1728  return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1729  }
1730  case KVM_HAS_DEVICE_ATTR: {
1731  if (copy_from_user(&attr, argp, sizeof(attr)))
1732  return -EFAULT;
1733 
1734  return kvm_vm_has_attr(kvm, &attr);
1735  }
1736  case KVM_SET_DEVICE_ATTR: {
1737  if (copy_from_user(&attr, argp, sizeof(attr)))
1738  return -EFAULT;
1739 
1740  return kvm_vm_set_attr(kvm, &attr);
1741  }
1742  case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1743  struct reg_mask_range range;
1744 
1745  if (copy_from_user(&range, argp, sizeof(range)))
1746  return -EFAULT;
1747  return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1748  }
1749  default:
1750  return -EINVAL;
1751  }
1752 }
1753 
1754 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1755 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1756 {
1757  struct kvm_vcpu *tmp_vcpu;
1758 
1759  for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1760  tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1761  mutex_unlock(&tmp_vcpu->mutex);
1762  }
1763 }
1764 
1765 void unlock_all_vcpus(struct kvm *kvm)
1766 {
1767  lockdep_assert_held(&kvm->lock);
1768 
1769  unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1770 }
1771 
1772 /* Returns true if all vcpus were locked, false otherwise */
1773 bool lock_all_vcpus(struct kvm *kvm)
1774 {
1775  struct kvm_vcpu *tmp_vcpu;
1776  unsigned long c;
1777 
1778  lockdep_assert_held(&kvm->lock);
1779 
1780  /*
1781  * Any time a vcpu is in an ioctl (including running), the
1782  * core KVM code tries to grab the vcpu->mutex.
1783  *
1784  * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1785  * other VCPUs can fiddle with the state while we access it.
1786  */
1787  kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1788  if (!mutex_trylock(&tmp_vcpu->mutex)) {
1789  unlock_vcpus(kvm, c - 1);
1790  return false;
1791  }
1792  }
1793 
1794  return true;
1795 }
1796 
1797 static unsigned long nvhe_percpu_size(void)
1798 {
1799  return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1800  (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1801 }
1802 
1803 static unsigned long nvhe_percpu_order(void)
1804 {
1805  unsigned long size = nvhe_percpu_size();
1806 
1807  return size ? get_order(size) : 0;
1808 }
1809 
1810 /* A lookup table holding the hypervisor VA for each vector slot */
1811 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1812 
1813 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1814 {
1815  hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1816 }
1817 
1818 static int kvm_init_vector_slots(void)
1819 {
1820  int err;
1821  void *base;
1822 
1823  base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1824  kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1825 
1826  base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1827  kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1828 
1829  if (kvm_system_needs_idmapped_vectors() &&
1830  !is_protected_kvm_enabled()) {
1831  err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1832  __BP_HARDEN_HYP_VECS_SZ, &base);
1833  if (err)
1834  return err;
1835  }
1836 
1837  kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1838  kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1839  return 0;
1840 }
1841 
1842 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1843 {
1844  struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1845  u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1846  unsigned long tcr;
1847 
1848  /*
1849  * Calculate the raw per-cpu offset without a translation from the
1850  * kernel's mapping to the linear mapping, and store it in tpidr_el2
1851  * so that we can use adr_l to access per-cpu variables in EL2.
1852  * Also drop the KASAN tag which gets in the way...
1853  */
1854  params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1855  (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1856 
1857  params->mair_el2 = read_sysreg(mair_el1);
1858 
1859  tcr = read_sysreg(tcr_el1);
1860  if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1861  tcr |= TCR_EPD1_MASK;
1862  } else {
1863  tcr &= TCR_EL2_MASK;
1864  tcr |= TCR_EL2_RES1;
1865  }
1866  tcr &= ~TCR_T0SZ_MASK;
1867  tcr |= TCR_T0SZ(hyp_va_bits);
1868  tcr &= ~TCR_EL2_PS_MASK;
1869  tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1870  if (kvm_lpa2_is_enabled())
1871  tcr |= TCR_EL2_DS;
1872  params->tcr_el2 = tcr;
1873 
1874  params->pgd_pa = kvm_mmu_get_httbr();
1875  if (is_protected_kvm_enabled())
1876  params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1877  else
1878  params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1879  if (cpus_have_final_cap(ARM64_KVM_HVHE))
1880  params->hcr_el2 |= HCR_E2H;
1881  params->vttbr = params->vtcr = 0;
1882 
1883  /*
1884  * Flush the init params from the data cache because the struct will
1885  * be read while the MMU is off.
1886  */
1887  kvm_flush_dcache_to_poc(params, sizeof(*params));
1888 }
1889 
1890 static void hyp_install_host_vector(void)
1891 {
1892  struct kvm_nvhe_init_params *params;
1893  struct arm_smccc_res res;
1894 
1895  /* Switch from the HYP stub to our own HYP init vector */
1896  __hyp_set_vectors(kvm_get_idmap_vector());
1897 
1898  /*
1899  * Call initialization code, and switch to the full blown HYP code.
1900  * If the cpucaps haven't been finalized yet, something has gone very
1901  * wrong, and hyp will crash and burn when it uses any
1902  * cpus_have_*_cap() wrapper.
1903  */
1904  BUG_ON(!system_capabilities_finalized());
1905  params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1906  arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1907  WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1908 }
1909 
1910 static void cpu_init_hyp_mode(void)
1911 {
1913 
1914  /*
1915  * Disabling SSBD on a non-VHE system requires us to enable SSBS
1916  * at EL2.
1917  */
1918  if (this_cpu_has_cap(ARM64_SSBS) &&
1919  arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1920  kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1921  }
1922 }
1923 
1924 static void cpu_hyp_reset(void)
1925 {
1926  if (!is_kernel_in_hyp_mode())
1927  __hyp_reset_vectors();
1928 }
1929 
1930 /*
1931  * EL2 vectors can be mapped and rerouted in a number of ways,
1932  * depending on the kernel configuration and CPU present:
1933  *
1934  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1935  * placed in one of the vector slots, which is executed before jumping
1936  * to the real vectors.
1937  *
1938  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1939  * containing the hardening sequence is mapped next to the idmap page,
1940  * and executed before jumping to the real vectors.
1941  *
1942  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1943  * empty slot is selected, mapped next to the idmap page, and
1944  * executed before jumping to the real vectors.
1945  *
1946  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1947  * VHE, as we don't have hypervisor-specific mappings. If the system
1948  * is VHE and yet selects this capability, it will be ignored.
1949  */
1950 static void cpu_set_hyp_vector(void)
1951 {
1952  struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1953  void *vector = hyp_spectre_vector_selector[data->slot];
1954 
1955  if (!is_protected_kvm_enabled())
1956  *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1957  else
1958  kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1959 }
1960 
1961 static void cpu_hyp_init_context(void)
1962 {
1963  kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1964 
1965  if (!is_kernel_in_hyp_mode())
1967 }
1968 
1969 static void cpu_hyp_init_features(void)
1970 {
1973 
1974  if (is_kernel_in_hyp_mode())
1976 
1977  if (vgic_present)
1979 }
1980 
1981 static void cpu_hyp_reinit(void)
1982 {
1983  cpu_hyp_reset();
1986 }
1987 
1988 static void cpu_hyp_init(void *discard)
1989 {
1990  if (!__this_cpu_read(kvm_hyp_initialized)) {
1991  cpu_hyp_reinit();
1992  __this_cpu_write(kvm_hyp_initialized, 1);
1993  }
1994 }
1995 
1996 static void cpu_hyp_uninit(void *discard)
1997 {
1998  if (__this_cpu_read(kvm_hyp_initialized)) {
1999  cpu_hyp_reset();
2000  __this_cpu_write(kvm_hyp_initialized, 0);
2001  }
2002 }
2003 
2005 {
2006  /*
2007  * Most calls to this function are made with migration
2008  * disabled, but not with preemption disabled. The former is
2009  * enough to ensure correctness, but most of the helpers
2010  * expect the later and will throw a tantrum otherwise.
2011  */
2012  preempt_disable();
2013 
2014  cpu_hyp_init(NULL);
2015 
2016  kvm_vgic_cpu_up();
2017  kvm_timer_cpu_up();
2018 
2019  preempt_enable();
2020 
2021  return 0;
2022 }
2023 
2025 {
2028 
2029  if (!is_protected_kvm_enabled())
2030  cpu_hyp_uninit(NULL);
2031 }
2032 
2033 #ifdef CONFIG_CPU_PM
2034 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2035  unsigned long cmd,
2036  void *v)
2037 {
2038  /*
2039  * kvm_hyp_initialized is left with its old value over
2040  * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2041  * re-enable hyp.
2042  */
2043  switch (cmd) {
2044  case CPU_PM_ENTER:
2045  if (__this_cpu_read(kvm_hyp_initialized))
2046  /*
2047  * don't update kvm_hyp_initialized here
2048  * so that the hyp will be re-enabled
2049  * when we resume. See below.
2050  */
2051  cpu_hyp_reset();
2052 
2053  return NOTIFY_OK;
2054  case CPU_PM_ENTER_FAILED:
2055  case CPU_PM_EXIT:
2056  if (__this_cpu_read(kvm_hyp_initialized))
2057  /* The hyp was enabled before suspend. */
2058  cpu_hyp_reinit();
2059 
2060  return NOTIFY_OK;
2061 
2062  default:
2063  return NOTIFY_DONE;
2064  }
2065 }
2066 
2067 static struct notifier_block hyp_init_cpu_pm_nb = {
2068  .notifier_call = hyp_init_cpu_pm_notifier,
2069 };
2070 
2071 static void __init hyp_cpu_pm_init(void)
2072 {
2073  if (!is_protected_kvm_enabled())
2074  cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2075 }
2076 static void __init hyp_cpu_pm_exit(void)
2077 {
2078  if (!is_protected_kvm_enabled())
2079  cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2080 }
2081 #else
2082 static inline void __init hyp_cpu_pm_init(void)
2083 {
2084 }
2085 static inline void __init hyp_cpu_pm_exit(void)
2086 {
2087 }
2088 #endif
2089 
2090 static void __init init_cpu_logical_map(void)
2091 {
2092  unsigned int cpu;
2093 
2094  /*
2095  * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2096  * Only copy the set of online CPUs whose features have been checked
2097  * against the finalized system capabilities. The hypervisor will not
2098  * allow any other CPUs from the `possible` set to boot.
2099  */
2100  for_each_online_cpu(cpu)
2102 }
2103 
2104 #define init_psci_0_1_impl_state(config, what) \
2105  config.psci_0_1_ ## what ## _implemented = psci_ops.what
2106 
2107 static bool __init init_psci_relay(void)
2108 {
2109  /*
2110  * If PSCI has not been initialized, protected KVM cannot install
2111  * itself on newly booted CPUs.
2112  */
2113  if (!psci_ops.get_version) {
2114  kvm_err("Cannot initialize protected mode without PSCI\n");
2115  return false;
2116  }
2117 
2118  kvm_host_psci_config.version = psci_ops.get_version();
2119  kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2120 
2121  if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2122  kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2127  }
2128  return true;
2129 }
2130 
2131 static int __init init_subsystems(void)
2132 {
2133  int err = 0;
2134 
2135  /*
2136  * Enable hardware so that subsystem initialisation can access EL2.
2137  */
2138  on_each_cpu(cpu_hyp_init, NULL, 1);
2139 
2140  /*
2141  * Register CPU lower-power notifier
2142  */
2143  hyp_cpu_pm_init();
2144 
2145  /*
2146  * Init HYP view of VGIC
2147  */
2148  err = kvm_vgic_hyp_init();
2149  switch (err) {
2150  case 0:
2151  vgic_present = true;
2152  break;
2153  case -ENODEV:
2154  case -ENXIO:
2155  vgic_present = false;
2156  err = 0;
2157  break;
2158  default:
2159  goto out;
2160  }
2161 
2162  /*
2163  * Init HYP architected timer support
2164  */
2166  if (err)
2167  goto out;
2168 
2169  kvm_register_perf_callbacks(NULL);
2170 
2171 out:
2172  if (err)
2173  hyp_cpu_pm_exit();
2174 
2175  if (err || !is_protected_kvm_enabled())
2176  on_each_cpu(cpu_hyp_uninit, NULL, 1);
2177 
2178  return err;
2179 }
2180 
2181 static void __init teardown_subsystems(void)
2182 {
2183  kvm_unregister_perf_callbacks();
2184  hyp_cpu_pm_exit();
2185 }
2186 
2187 static void __init teardown_hyp_mode(void)
2188 {
2189  int cpu;
2190 
2191  free_hyp_pgds();
2192  for_each_possible_cpu(cpu) {
2193  free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2194  free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2195  }
2196 }
2197 
2198 static int __init do_pkvm_init(u32 hyp_va_bits)
2199 {
2200  void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2201  int ret;
2202 
2203  preempt_disable();
2205  ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2206  num_possible_cpus(), kern_hyp_va(per_cpu_base),
2207  hyp_va_bits);
2209 
2210  /*
2211  * The stub hypercalls are now disabled, so set our local flag to
2212  * prevent a later re-init attempt in kvm_arch_hardware_enable().
2213  */
2214  __this_cpu_write(kvm_hyp_initialized, 1);
2215  preempt_enable();
2216 
2217  return ret;
2218 }
2219 
2220 static u64 get_hyp_id_aa64pfr0_el1(void)
2221 {
2222  /*
2223  * Track whether the system isn't affected by spectre/meltdown in the
2224  * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2225  * Although this is per-CPU, we make it global for simplicity, e.g., not
2226  * to have to worry about vcpu migration.
2227  *
2228  * Unlike for non-protected VMs, userspace cannot override this for
2229  * protected VMs.
2230  */
2231  u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2232 
2233  val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2234  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2235 
2236  val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2237  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2238  val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2239  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2240 
2241  return val;
2242 }
2243 
2244 static void kvm_hyp_init_symbols(void)
2245 {
2247  kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2248  kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2249  kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2250  kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2251  kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2252  kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2253  kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2254  kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2255  kvm_nvhe_sym(__icache_flags) = __icache_flags;
2256  kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2257 }
2258 
2259 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2260 {
2261  void *addr = phys_to_virt(hyp_mem_base);
2262  int ret;
2263 
2264  ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2265  if (ret)
2266  return ret;
2267 
2268  ret = do_pkvm_init(hyp_va_bits);
2269  if (ret)
2270  return ret;
2271 
2272  free_hyp_pgds();
2273 
2274  return 0;
2275 }
2276 
2277 static void pkvm_hyp_init_ptrauth(void)
2278 {
2279  struct kvm_cpu_context *hyp_ctxt;
2280  int cpu;
2281 
2282  for_each_possible_cpu(cpu) {
2283  hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2284  hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2285  hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2286  hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2287  hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2288  hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2289  hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2290  hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2291  hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2292  hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2293  hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2294  }
2295 }
2296 
2297 /* Inits Hyp-mode on all online CPUs */
2298 static int __init init_hyp_mode(void)
2299 {
2300  u32 hyp_va_bits;
2301  int cpu;
2302  int err = -ENOMEM;
2303 
2304  /*
2305  * The protected Hyp-mode cannot be initialized if the memory pool
2306  * allocation has failed.
2307  */
2308  if (is_protected_kvm_enabled() && !hyp_mem_base)
2309  goto out_err;
2310 
2311  /*
2312  * Allocate Hyp PGD and setup Hyp identity mapping
2313  */
2314  err = kvm_mmu_init(&hyp_va_bits);
2315  if (err)
2316  goto out_err;
2317 
2318  /*
2319  * Allocate stack pages for Hypervisor-mode
2320  */
2321  for_each_possible_cpu(cpu) {
2322  unsigned long stack_page;
2323 
2324  stack_page = __get_free_page(GFP_KERNEL);
2325  if (!stack_page) {
2326  err = -ENOMEM;
2327  goto out_err;
2328  }
2329 
2330  per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2331  }
2332 
2333  /*
2334  * Allocate and initialize pages for Hypervisor-mode percpu regions.
2335  */
2336  for_each_possible_cpu(cpu) {
2337  struct page *page;
2338  void *page_addr;
2339 
2340  page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2341  if (!page) {
2342  err = -ENOMEM;
2343  goto out_err;
2344  }
2345 
2346  page_addr = page_address(page);
2347  memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2348  kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2349  }
2350 
2351  /*
2352  * Map the Hyp-code called directly from the host
2353  */
2354  err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2355  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2356  if (err) {
2357  kvm_err("Cannot map world-switch code\n");
2358  goto out_err;
2359  }
2360 
2361  err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2362  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2363  if (err) {
2364  kvm_err("Cannot map .hyp.rodata section\n");
2365  goto out_err;
2366  }
2367 
2368  err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2369  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2370  if (err) {
2371  kvm_err("Cannot map rodata section\n");
2372  goto out_err;
2373  }
2374 
2375  /*
2376  * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2377  * section thanks to an assertion in the linker script. Map it RW and
2378  * the rest of .bss RO.
2379  */
2380  err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2381  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2382  if (err) {
2383  kvm_err("Cannot map hyp bss section: %d\n", err);
2384  goto out_err;
2385  }
2386 
2387  err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2388  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2389  if (err) {
2390  kvm_err("Cannot map bss section\n");
2391  goto out_err;
2392  }
2393 
2394  /*
2395  * Map the Hyp stack pages
2396  */
2397  for_each_possible_cpu(cpu) {
2398  struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2399  char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2400 
2401  err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2402  if (err) {
2403  kvm_err("Cannot map hyp stack\n");
2404  goto out_err;
2405  }
2406 
2407  /*
2408  * Save the stack PA in nvhe_init_params. This will be needed
2409  * to recreate the stack mapping in protected nVHE mode.
2410  * __hyp_pa() won't do the right thing there, since the stack
2411  * has been mapped in the flexible private VA space.
2412  */
2413  params->stack_pa = __pa(stack_page);
2414  }
2415 
2416  for_each_possible_cpu(cpu) {
2417  char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2418  char *percpu_end = percpu_begin + nvhe_percpu_size();
2419 
2420  /* Map Hyp percpu pages */
2421  err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2422  if (err) {
2423  kvm_err("Cannot map hyp percpu region\n");
2424  goto out_err;
2425  }
2426 
2427  /* Prepare the CPU initialization parameters */
2428  cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2429  }
2430 
2432 
2433  if (is_protected_kvm_enabled()) {
2434  if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2435  cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2437 
2439 
2440  if (!init_psci_relay()) {
2441  err = -ENODEV;
2442  goto out_err;
2443  }
2444 
2445  err = kvm_hyp_init_protection(hyp_va_bits);
2446  if (err) {
2447  kvm_err("Failed to init hyp memory protection\n");
2448  goto out_err;
2449  }
2450  }
2451 
2452  return 0;
2453 
2454 out_err:
2456  kvm_err("error initializing Hyp mode: %d\n", err);
2457  return err;
2458 }
2459 
2460 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2461 {
2462  struct kvm_vcpu *vcpu;
2463  unsigned long i;
2464 
2465  mpidr &= MPIDR_HWID_BITMASK;
2466 
2467  if (kvm->arch.mpidr_data) {
2468  u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2469 
2470  vcpu = kvm_get_vcpu(kvm,
2471  kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2472  if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2473  vcpu = NULL;
2474 
2475  return vcpu;
2476  }
2477 
2478  kvm_for_each_vcpu(i, vcpu, kvm) {
2479  if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2480  return vcpu;
2481  }
2482  return NULL;
2483 }
2484 
2485 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2486 {
2487  return irqchip_in_kernel(kvm);
2488 }
2489 
2491 {
2492  return true;
2493 }
2494 
2495 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2496  struct irq_bypass_producer *prod)
2497 {
2498  struct kvm_kernel_irqfd *irqfd =
2499  container_of(cons, struct kvm_kernel_irqfd, consumer);
2500 
2501  return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2502  &irqfd->irq_entry);
2503 }
2504 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2505  struct irq_bypass_producer *prod)
2506 {
2507  struct kvm_kernel_irqfd *irqfd =
2508  container_of(cons, struct kvm_kernel_irqfd, consumer);
2509 
2510  kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2511  &irqfd->irq_entry);
2512 }
2513 
2514 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2515 {
2516  struct kvm_kernel_irqfd *irqfd =
2517  container_of(cons, struct kvm_kernel_irqfd, consumer);
2518 
2519  kvm_arm_halt_guest(irqfd->kvm);
2520 }
2521 
2522 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2523 {
2524  struct kvm_kernel_irqfd *irqfd =
2525  container_of(cons, struct kvm_kernel_irqfd, consumer);
2526 
2527  kvm_arm_resume_guest(irqfd->kvm);
2528 }
2529 
2530 /* Initialize Hyp-mode and memory mappings on all CPUs */
2531 static __init int kvm_arm_init(void)
2532 {
2533  int err;
2534  bool in_hyp_mode;
2535 
2536  if (!is_hyp_mode_available()) {
2537  kvm_info("HYP mode not available\n");
2538  return -ENODEV;
2539  }
2540 
2541  if (kvm_get_mode() == KVM_MODE_NONE) {
2542  kvm_info("KVM disabled from command line\n");
2543  return -ENODEV;
2544  }
2545 
2546  err = kvm_sys_reg_table_init();
2547  if (err) {
2548  kvm_info("Error initializing system register tables");
2549  return err;
2550  }
2551 
2552  in_hyp_mode = is_kernel_in_hyp_mode();
2553 
2554  if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2555  cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2556  kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2557  "Only trusted guests should be used on this system.\n");
2558 
2559  err = kvm_set_ipa_limit();
2560  if (err)
2561  return err;
2562 
2563  err = kvm_arm_init_sve();
2564  if (err)
2565  return err;
2566 
2567  err = kvm_arm_vmid_alloc_init();
2568  if (err) {
2569  kvm_err("Failed to initialize VMID allocator.\n");
2570  return err;
2571  }
2572 
2573  if (!in_hyp_mode) {
2574  err = init_hyp_mode();
2575  if (err)
2576  goto out_err;
2577  }
2578 
2579  err = kvm_init_vector_slots();
2580  if (err) {
2581  kvm_err("Cannot initialise vector slots\n");
2582  goto out_hyp;
2583  }
2584 
2585  err = init_subsystems();
2586  if (err)
2587  goto out_hyp;
2588 
2589  if (is_protected_kvm_enabled()) {
2590  kvm_info("Protected nVHE mode initialized successfully\n");
2591  } else if (in_hyp_mode) {
2592  kvm_info("VHE mode initialized successfully\n");
2593  } else {
2594  kvm_info("Hyp mode initialized successfully\n");
2595  }
2596 
2597  /*
2598  * FIXME: Do something reasonable if kvm_init() fails after pKVM
2599  * hypervisor protection is finalized.
2600  */
2601  err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2602  if (err)
2603  goto out_subs;
2604 
2605  kvm_arm_initialised = true;
2606 
2607  return 0;
2608 
2609 out_subs:
2611 out_hyp:
2612  if (!in_hyp_mode)
2614 out_err:
2616  return err;
2617 }
2618 
2619 static int __init early_kvm_mode_cfg(char *arg)
2620 {
2621  if (!arg)
2622  return -EINVAL;
2623 
2624  if (strcmp(arg, "none") == 0) {
2625  kvm_mode = KVM_MODE_NONE;
2626  return 0;
2627  }
2628 
2629  if (!is_hyp_mode_available()) {
2630  pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2631  return 0;
2632  }
2633 
2634  if (strcmp(arg, "protected") == 0) {
2635  if (!is_kernel_in_hyp_mode())
2636  kvm_mode = KVM_MODE_PROTECTED;
2637  else
2638  pr_warn_once("Protected KVM not available with VHE\n");
2639 
2640  return 0;
2641  }
2642 
2643  if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2644  kvm_mode = KVM_MODE_DEFAULT;
2645  return 0;
2646  }
2647 
2648  if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2649  kvm_mode = KVM_MODE_NV;
2650  return 0;
2651  }
2652 
2653  return -EINVAL;
2654 }
2656 
2657 enum kvm_mode kvm_get_mode(void)
2658 {
2659  return kvm_mode;
2660 }
2661 
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:877
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1445
int __init kvm_timer_hyp_init(bool has_gic)
Definition: arch_timer.c:1367
void kvm_timer_cpu_up(void)
Definition: arch_timer.c:1034
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:826
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:430
void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:927
int kvm_timer_enable(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1506
void kvm_timer_init_vm(struct kvm *kvm)
Definition: arch_timer.c:1028
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:860
int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, struct kvm_arm_counter_offset *offset)
Definition: arch_timer.c:1651
void kvm_timer_cpu_down(void)
Definition: arch_timer.c:1041
void kvm_timer_init_vhe(void)
Definition: arch_timer.c:1553
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
Definition: arch_timer.c:1011
bool lock_all_vcpus(struct kvm *kvm)
Definition: arm.c:1773
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use)
static int __init init_subsystems(void)
Definition: arm.c:2131
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: arm.c:330
static int check_vcpu_requests(struct kvm_vcpu *vcpu)
Definition: arm.c:838
static void cpu_hyp_init(void *discard)
Definition: arm.c:1988
struct kvm_vcpu * kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
Definition: arm.c:2460
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arm.c:1476
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: arm.c:1683
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
Definition: arm.c:639
static void cpu_set_hyp_vector(void)
Definition: arm.c:1950
static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
Definition: arm.c:1663
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr)
Definition: arm.c:1650
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
Definition: arm.c:216
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
Definition: arm.c:188
void kvm_arm_resume_guest(struct kvm *kvm)
Definition: arm.c:729
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
Definition: arm.c:1813
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, bool line_status)
Definition: arm.c:1196
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
Definition: arm.c:404
static int __init early_kvm_mode_cfg(char *arg)
Definition: arm.c:2619
static int __init init_hyp_mode(void)
Definition: arm.c:2298
void unlock_all_vcpus(struct kvm *kvm)
Definition: arm.c:1765
static bool vgic_present
Definition: arm.c:57
static void cpu_hyp_reinit(void)
Definition: arm.c:1981
static void cpu_hyp_uninit(void *discard)
Definition: arm.c:1996
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
Definition: arm.c:501
static bool __init init_psci_relay(void)
Definition: arm.c:2107
static int kvm_init_vector_slots(void)
Definition: arm.c:1818
static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
Definition: arm.c:2259
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
Definition: arm.c:2522
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
Definition: arm.c:67
static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
Definition: arm.c:944
static void cpu_hyp_init_features(void)
Definition: arm.c:1969
static int __init do_pkvm_init(u32 hyp_va_bits)
Definition: arm.c:2198
static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
Definition: arm.c:506
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
Definition: arm.c:1645
static bool kvm_arm_initialised
Definition: arm.c:57
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
Definition: arm.c:905
static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
Definition: arm.c:513
bool is_kvm_arm_initialised(void)
Definition: arm.c:62
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)
Definition: arm.c:518
static __init int kvm_arm_init(void)
Definition: arm.c:2531
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
Definition: arm.c:421
bool kvm_arch_has_irq_bypass(void)
Definition: arm.c:2490
static int kvm_arm_default_max_vcpus(void)
Definition: arm.c:127
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
Definition: arm.c:880
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
Definition: arm.c:769
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
Definition: arm.c:578
static void kvm_init_mpidr_data(struct kvm *kvm)
Definition: arm.c:583
bool kvm_arch_intc_initialized(struct kvm *kvm)
Definition: arm.c:714
static void __init hyp_cpu_pm_exit(void)
Definition: arm.c:2085
static void kvm_hyp_init_symbols(void)
Definition: arm.c:2244
static u64 get_hyp_id_aa64pfr0_el1(void)
Definition: arm.c:2220
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
Definition: arm.c:400
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
Definition: arm.c:136
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector)
static void __init teardown_subsystems(void)
Definition: arm.c:2181
static void cpu_hyp_init_context(void)
Definition: arm.c:1961
DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page)
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
Definition: arm.c:566
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
Definition: arm.c:494
static void * hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]
Definition: arm.c:1811
static void __init hyp_cpu_pm_init(void)
Definition: arm.c:2082
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, const struct kvm_vcpu_init *init)
Definition: arm.c:1371
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
Definition: arm.c:472
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)
Definition: arm.c:526
static unsigned long nvhe_percpu_order(void)
Definition: arm.c:1803
struct kvm * kvm_arch_alloc_vm(void)
Definition: arm.c:336
static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
Definition: arm.c:1673
static void __init init_cpu_logical_map(void)
Definition: arm.c:2090
#define init_psci_0_1_impl_state(config, what)
Definition: arm.c:2104
static unsigned long nvhe_percpu_size(void)
Definition: arm.c:1797
void kvm_arm_halt_guest(struct kvm *kvm)
Definition: arm.c:719
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
Definition: arm.c:2485
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
Definition: arm.c:416
static void __init teardown_hyp_mode(void)
Definition: arm.c:2187
static unsigned long system_supported_vcpu_features(void)
Definition: arm.c:1249
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
Definition: arm.c:426
int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
Definition: arm.c:72
static void hyp_install_host_vector(void)
Definition: arm.c:1890
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
Definition: arm.c:1516
static void pkvm_hyp_init_ptrauth(void)
Definition: arm.c:2277
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)
Definition: arm.c:1490
static void cpu_init_hyp_mode(void)
Definition: arm.c:1910
int kvm_arch_hardware_enable(void)
Definition: arm.c:2004
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
Definition: arm.c:559
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arm.c:1462
early_param("kvm-arm.mode", early_kvm_mode_cfg)
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
Definition: arm.c:346
static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
Definition: arm.c:1755
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
Definition: arm.c:2514
static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
Definition: arm.c:1326
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod)
Definition: arm.c:2495
static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, const struct kvm_vcpu_init *init)
Definition: arm.c:1317
static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
Definition: arm.c:796
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
Definition: arm.c:1162
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params)
static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)
Definition: arm.c:1498
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
Definition: arm.c:1394
void kvm_arch_hardware_disable(void)
Definition: arm.c:2024
void kvm_arch_destroy_vm(struct kvm *kvm)
Definition: arm.c:198
module_init(kvm_arm_init)
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
Definition: arm.c:965
static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
Definition: arm.c:1842
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: arm.c:1448
enum kvm_mode kvm_get_mode(void)
Definition: arm.c:2657
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, const struct kvm_vcpu_init *init)
Definition: arm.c:1341
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
Definition: arm.c:357
static enum kvm_mode kvm_mode
Definition: arm.c:48
static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
Definition: arm.c:740
static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, const struct kvm_vcpu_init *init)
Definition: arm.c:1273
static void cpu_hyp_reset(void)
Definition: arm.c:1924
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod)
Definition: arm.c:2504
static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
Definition: arm.c:487
static void kvm_pmu_update_vcpu_events(struct kvm_vcpu *vcpu)
Definition: arm_pmu.h:172
static bool kvm_arm_support_pmu_v3(void)
Definition: arm_pmu.h:113
#define kvm_vcpu_has_pmu(vcpu)
Definition: arm_pmu.h:170
#define irqchip_in_kernel(k)
Definition: arm_vgic.h:392
static int kvm_vgic_get_max_vcpus(void)
Definition: arm_vgic.h:411
#define vgic_initialized(k)
Definition: arm_vgic.h:393
#define VGIC_NR_PRIVATE_IRQS
Definition: arm_vgic.h:27
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu)
Definition: debug.c:137
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu)
Definition: debug.c:148
void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu)
Definition: debug.c:340
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu)
Definition: debug.c:280
void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu)
Definition: debug.c:317
void kvm_arm_init_debug(void)
Definition: debug.c:78
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu)
Definition: debug.c:169
bool kvm_dirty_ring_check_request(struct kvm_vcpu *vcpu)
Definition: dirty_ring.c:194
static unsigned long base
Definition: early_alloc.c:15
void __kvm_adjust_pc(struct kvm_vcpu *vcpu)
Definition: exception.c:365
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
Definition: fpsimd.c:139
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
Definition: fpsimd.c:175
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
Definition: fpsimd.c:75
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
Definition: fpsimd.c:39
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu)
Definition: fpsimd.c:126
size_t size
Definition: gen-hyprel.c:133
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: guest.c:991
u32 __attribute_const__ kvm_target_cpu(void)
Definition: guest.c:857
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
Definition: guest.c:735
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, struct kvm_arm_copy_mte_tags *copy_tags)
Definition: guest.c:1014
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
Definition: guest.c:717
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)
Definition: guest.c:814
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:782
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: guest.c:943
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
Definition: guest.c:968
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)
Definition: guest.c:832
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
Definition: guest.c:762
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
Definition: handle_exit.c:366
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
Definition: handle_exit.c:322
u64 cpu_logical_map(unsigned int cpu)
Definition: hyp-smp.c:19
u64 __ro_after_init hyp_cpu_logical_map[NR_CPUS]
Definition: hyp-smp.c:17
unsigned long __ro_after_init kvm_arm_hyp_percpu_base[NR_CPUS]
Definition: hyp-smp.c:26
unsigned int kvm_arm_vmid_bits
Definition: pkvm.c:19
unsigned long __icache_flags
Definition: pkvm.c:16
u64 id_aa64isar2_el1_sys_val
Definition: sys_regs.c:25
u64 id_aa64pfr0_el1_sys_val
Definition: sys_regs.c:21
u64 id_aa64pfr1_el1_sys_val
Definition: sys_regs.c:22
u64 id_aa64mmfr0_el1_sys_val
Definition: sys_regs.c:26
u64 id_aa64mmfr2_el1_sys_val
Definition: sys_regs.c:28
u64 id_aa64mmfr1_el1_sys_val
Definition: sys_regs.c:27
u64 id_aa64isar1_el1_sys_val
Definition: sys_regs.c:24
u64 id_aa64isar0_el1_sys_val
Definition: sys_regs.c:23
u64 id_aa64smfr0_el1_sys_val
Definition: sys_regs.c:29
void kvm_arm_teardown_hypercalls(struct kvm *kvm)
Definition: hypercalls.c:403
void kvm_arm_init_hypercalls(struct kvm *kvm)
Definition: hypercalls.c:392
int kvm_vm_smccc_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
Definition: hypercalls.c:652
int kvm_vm_smccc_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
Definition: hypercalls.c:642
bool kvm_are_all_memslots_empty(struct kvm *kvm)
Definition: kvm_main.c:4958
void kvm_destroy_vcpus(struct kvm *kvm)
Definition: kvm_main.c:522
void vcpu_put(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:219
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
Definition: kvm_main.c:6402
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3692
void vcpu_load(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:208
void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3842
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
Definition: kvm_main.c:340
static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
Definition: kvm_main.c:482
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3931
void kvm_sigset_activate(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3678
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu)
Definition: mmio.c:81
phys_addr_t kvm_mmu_get_httbr(void)
Definition: mmu.c:1823
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, void **haddr)
Definition: mmu.c:778
int kvm_share_hyp(void *from, void *to)
Definition: mmu.c:516
phys_addr_t kvm_get_idmap_vector(void)
Definition: mmu.c:1828
int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
Definition: mmu.c:574
int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
Definition: mmu.c:691
int __init kvm_mmu_init(u32 *hyp_va_bits)
Definition: mmu.c:1858
void kvm_unshare_hyp(void *from, void *to)
Definition: mmu.c:548
void stage2_unmap_vm(struct kvm *kvm)
Definition: mmu.c:992
void __init free_hyp_pgds(void)
Definition: mmu.c:372
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
Definition: mmu.c:868
int kvm_init_nv_sysregs(struct kvm *kvm)
Definition: nested.c:159
int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
Definition: switch.c:248
void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
Definition: tlb.c:182
void pkvm_destroy_hyp_vm(struct kvm *host_kvm)
Definition: pkvm.c:216
phys_addr_t hyp_mem_size
Definition: pkvm.c:24
phys_addr_t hyp_mem_base
Definition: pkvm.c:23
int pkvm_create_hyp_vm(struct kvm *host_kvm)
Definition: pkvm.c:204
int pkvm_init_host_vm(struct kvm *host_kvm)
Definition: pkvm.c:223
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:805
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:816
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:231
int kvm_arm_set_default_pmu(struct kvm *kvm)
Definition: pmu-emul.c:939
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:405
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:388
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:259
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:373
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
Definition: pmu-emul.c:417
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu)
Definition: pmu.c:197
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu)
Definition: pmu.c:176
struct kvm_host_psci_config __ro_after_init kvm_host_psci_config
Definition: psci-relay.c:23
bool kvm_arm_pvtime_supported(void)
Definition: pvtime.c:70
void kvm_update_stolen_time(struct kvm_vcpu *vcpu)
Definition: pvtime.c:13
void kvm_reset_vcpu(struct kvm_vcpu *vcpu)
Definition: reset.c:191
int __init kvm_arm_init_sve(void)
Definition: reset.c:50
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
Definition: reset.c:142
int __init kvm_set_ipa_limit(void)
Definition: reset.c:274
u32 get_kvm_ipa_limit(void)
Definition: reset.c:269
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
Definition: reset.c:150
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
Definition: reset.c:126
int __pkvm_init(phys_addr_t phys, unsigned long size, unsigned long nr_cpus, unsigned long *per_cpu_base, u32 hyp_va_bits)
Definition: setup.c:314
int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
Definition: sys_regs.c:3889
int __init kvm_sys_reg_table_init(void)
Definition: sys_regs.c:3933
void __pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu)
Definition: pkvm.c:205
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
Definition: vgic-init.c:388
void kvm_vgic_cpu_down(void)
Definition: vgic-init.c:513
int kvm_vgic_create(struct kvm *kvm, u32 type)
Definition: vgic-init.c:71
void kvm_vgic_cpu_up(void)
Definition: vgic-init.c:507
int kvm_vgic_map_resources(struct kvm *kvm)
Definition: vgic-init.c:456
void kvm_vgic_early_init(struct kvm *kvm)
Definition: vgic-init.c:52
int kvm_vgic_hyp_init(void)
Definition: vgic-init.c:564
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
Definition: vgic-init.c:194
void kvm_vgic_init_cpu_hardware(void)
Definition: vgic-init.c:544
void kvm_vgic_destroy(struct kvm *kvm)
Definition: vgic-init.c:397
int kvm_set_legacy_vgic_v2_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr)
int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq, struct kvm_kernel_irq_routing_entry *irq_entry)
Definition: vgic-v4.c:490
int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq, struct kvm_kernel_irq_routing_entry *irq_entry)
Definition: vgic-v4.c:411
int vgic_v4_load(struct kvm_vcpu *vcpu)
Definition: vgic-v4.c:349
int vgic_v4_put(struct kvm_vcpu *vcpu)
Definition: vgic-v4.c:339
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
Definition: vgic.c:971
void kvm_vgic_load(struct kvm_vcpu *vcpu)
Definition: vgic.c:938
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
Definition: vgic.c:905
void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
Definition: vgic.c:960
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
Definition: vgic.c:875
int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, unsigned int intid, bool level, void *owner)
Definition: vgic.c:439
void kvm_vgic_put(struct kvm_vcpu *vcpu)
Definition: vgic.c:949
void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu)
Definition: switch.c:170
void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu)
Definition: switch.c:163
bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid)
Definition: vmid.c:138
void kvm_arm_vmid_clear_active(void)
Definition: vmid.c:133
void __init kvm_arm_vmid_alloc_free(void)
Definition: vmid.c:197
int __init kvm_arm_vmid_alloc_init(void)
Definition: vmid.c:180