KVM
handle_exit.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/handle_exit.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 
14 #include <asm/esr.h>
15 #include <asm/exception.h>
16 #include <asm/kvm_asm.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_nested.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/stacktrace/nvhe.h>
22 #include <asm/traps.h>
23 
24 #include <kvm/arm_hypercalls.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_handle_exit.h"
28 
29 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
30 
31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
32 {
33  if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
34  kvm_inject_vabt(vcpu);
35 }
36 
37 static int handle_hvc(struct kvm_vcpu *vcpu)
38 {
39  trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
40  kvm_vcpu_hvc_get_imm(vcpu));
41  vcpu->stat.hvc_exit_stat++;
42 
43  /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
44  if (vcpu_has_nv(vcpu)) {
45  if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
47  else
48  kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
49 
50  return 1;
51  }
52 
53  return kvm_smccc_call_handler(vcpu);
54 }
55 
56 static int handle_smc(struct kvm_vcpu *vcpu)
57 {
58  /*
59  * "If an SMC instruction executed at Non-secure EL1 is
60  * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
61  * Trap exception, not a Secure Monitor Call exception [...]"
62  *
63  * We need to advance the PC after the trap, as it would
64  * otherwise return to the same address. Furthermore, pre-incrementing
65  * the PC before potentially exiting to userspace maintains the same
66  * abstraction for both SMCs and HVCs.
67  */
68  kvm_incr_pc(vcpu);
69 
70  /*
71  * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
72  * "SMC and HVC immediate value".
73  */
74  if (kvm_vcpu_hvc_get_imm(vcpu)) {
75  vcpu_set_reg(vcpu, 0, ~0UL);
76  return 1;
77  }
78 
79  /*
80  * If imm is zero then it is likely an SMCCC call.
81  *
82  * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
83  * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
84  * being treated as UNDEFINED.
85  */
86  return kvm_smccc_call_handler(vcpu);
87 }
88 
89 /*
90  * Guest access to FP/ASIMD registers are routed to this handler only
91  * when the system doesn't support FP/ASIMD.
92  */
93 static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
94 {
96  return 1;
97 }
98 
99 /**
100  * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
101  * instruction executed by a guest
102  *
103  * @vcpu: the vcpu pointer
104  *
105  * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
106  * decides to.
107  * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
108  * world-switches and schedule other host processes until there is an
109  * incoming IRQ or FIQ to the VM.
110  * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
111  *
112  * WF{I,E}T can immediately return if the deadline has already expired.
113  */
114 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
115 {
116  u64 esr = kvm_vcpu_get_esr(vcpu);
117 
118  if (esr & ESR_ELx_WFx_ISS_WFE) {
119  trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
120  vcpu->stat.wfe_exit_stat++;
121  } else {
122  trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
123  vcpu->stat.wfi_exit_stat++;
124  }
125 
126  if (esr & ESR_ELx_WFx_ISS_WFxT) {
127  if (esr & ESR_ELx_WFx_ISS_RV) {
128  u64 val, now;
129 
130  now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
131  val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
132 
133  if (now >= val)
134  goto out;
135  } else {
136  /* Treat WFxT as WFx if RN is invalid */
137  esr &= ~ESR_ELx_WFx_ISS_WFxT;
138  }
139  }
140 
141  if (esr & ESR_ELx_WFx_ISS_WFE) {
142  kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
143  } else {
144  if (esr & ESR_ELx_WFx_ISS_WFxT)
145  vcpu_set_flag(vcpu, IN_WFIT);
146 
147  kvm_vcpu_wfi(vcpu);
148  }
149 out:
150  kvm_incr_pc(vcpu);
151 
152  return 1;
153 }
154 
155 /**
156  * kvm_handle_guest_debug - handle a debug exception instruction
157  *
158  * @vcpu: the vcpu pointer
159  *
160  * We route all debug exceptions through the same handler. If both the
161  * guest and host are using the same debug facilities it will be up to
162  * userspace to re-inject the correct exception for guest delivery.
163  *
164  * @return: 0 (while setting vcpu->run->exit_reason)
165  */
166 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
167 {
168  struct kvm_run *run = vcpu->run;
169  u64 esr = kvm_vcpu_get_esr(vcpu);
170 
171  run->exit_reason = KVM_EXIT_DEBUG;
172  run->debug.arch.hsr = lower_32_bits(esr);
173  run->debug.arch.hsr_high = upper_32_bits(esr);
174  run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
175 
176  switch (ESR_ELx_EC(esr)) {
177  case ESR_ELx_EC_WATCHPT_LOW:
178  run->debug.arch.far = vcpu->arch.fault.far_el2;
179  break;
180  case ESR_ELx_EC_SOFTSTP_LOW:
181  vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
182  break;
183  }
184 
185  return 0;
186 }
187 
188 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
189 {
190  u64 esr = kvm_vcpu_get_esr(vcpu);
191 
192  kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
193  esr, esr_get_class_string(esr));
194 
195  kvm_inject_undefined(vcpu);
196  return 1;
197 }
198 
199 /*
200  * Guest access to SVE registers should be routed to this handler only
201  * when the system doesn't support SVE.
202  */
203 static int handle_sve(struct kvm_vcpu *vcpu)
204 {
205  kvm_inject_undefined(vcpu);
206  return 1;
207 }
208 
209 /*
210  * Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
211  * a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all
212  * that we can do is give the guest an UNDEF.
213  */
214 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
215 {
216  kvm_inject_undefined(vcpu);
217  return 1;
218 }
219 
220 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
221 {
222  if (kvm_vcpu_get_esr(vcpu) & ESR_ELx_ERET_ISS_ERET)
223  return kvm_handle_ptrauth(vcpu);
224 
225  /*
226  * If we got here, two possibilities:
227  *
228  * - the guest is in EL2, and we need to fully emulate ERET
229  *
230  * - the guest is in EL1, and we need to reinject the
231  * exception into the L1 hypervisor.
232  *
233  * If KVM ever traps ERET for its own use, we'll have to
234  * revisit this.
235  */
236  if (is_hyp_ctxt(vcpu))
238  else
239  kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
240 
241  return 1;
242 }
243 
244 static int handle_svc(struct kvm_vcpu *vcpu)
245 {
246  /*
247  * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
248  * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
249  * we should only have to deal with a 64 bit exception.
250  */
251  kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
252  return 1;
253 }
254 
256  [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
257  [ESR_ELx_EC_WFx] = kvm_handle_wfx,
258  [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
259  [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
260  [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
261  [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
262  [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
263  [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
264  [ESR_ELx_EC_HVC32] = handle_hvc,
265  [ESR_ELx_EC_SMC32] = handle_smc,
266  [ESR_ELx_EC_HVC64] = handle_hvc,
267  [ESR_ELx_EC_SMC64] = handle_smc,
268  [ESR_ELx_EC_SVC64] = handle_svc,
269  [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
270  [ESR_ELx_EC_SVE] = handle_sve,
271  [ESR_ELx_EC_ERET] = kvm_handle_eret,
272  [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
273  [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
274  [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
275  [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
276  [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
277  [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
278  [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
279  [ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd,
280  [ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
281 };
282 
283 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
284 {
285  u64 esr = kvm_vcpu_get_esr(vcpu);
286  u8 esr_ec = ESR_ELx_EC(esr);
287 
288  return arm_exit_handlers[esr_ec];
289 }
290 
291 /*
292  * We may be single-stepping an emulated instruction. If the emulation
293  * has been completed in the kernel, we can return to userspace with a
294  * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
295  * emulation first.
296  */
297 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
298 {
299  int handled;
300 
301  /*
302  * See ARM ARM B1.14.1: "Hyp traps on instructions
303  * that fail their condition code check"
304  */
305  if (!kvm_condition_valid(vcpu)) {
306  kvm_incr_pc(vcpu);
307  handled = 1;
308  } else {
309  exit_handle_fn exit_handler;
310 
311  exit_handler = kvm_get_exit_handler(vcpu);
312  handled = exit_handler(vcpu);
313  }
314 
315  return handled;
316 }
317 
318 /*
319  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
320  * proper exit to userspace.
321  */
322 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
323 {
324  struct kvm_run *run = vcpu->run;
325 
326  if (ARM_SERROR_PENDING(exception_index)) {
327  /*
328  * The SError is handled by handle_exit_early(). If the guest
329  * survives it will re-execute the original instruction.
330  */
331  return 1;
332  }
333 
334  exception_index = ARM_EXCEPTION_CODE(exception_index);
335 
336  switch (exception_index) {
337  case ARM_EXCEPTION_IRQ:
338  return 1;
339  case ARM_EXCEPTION_EL1_SERROR:
340  return 1;
341  case ARM_EXCEPTION_TRAP:
342  return handle_trap_exceptions(vcpu);
343  case ARM_EXCEPTION_HYP_GONE:
344  /*
345  * EL2 has been reset to the hyp-stub. This happens when a guest
346  * is pre-emptied by kvm_reboot()'s shutdown call.
347  */
348  run->exit_reason = KVM_EXIT_FAIL_ENTRY;
349  return 0;
350  case ARM_EXCEPTION_IL:
351  /*
352  * We attempted an illegal exception return. Guest state must
353  * have been corrupted somehow. Give up.
354  */
355  run->exit_reason = KVM_EXIT_FAIL_ENTRY;
356  return -EINVAL;
357  default:
358  kvm_pr_unimpl("Unsupported exception type: %d",
359  exception_index);
360  run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
361  return 0;
362  }
363 }
364 
365 /* For exit types that need handling before we can be preempted */
366 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
367 {
368  if (ARM_SERROR_PENDING(exception_index)) {
369  if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
370  u64 disr = kvm_vcpu_get_disr(vcpu);
371 
372  kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
373  } else {
374  kvm_inject_vabt(vcpu);
375  }
376 
377  return;
378  }
379 
380  exception_index = ARM_EXCEPTION_CODE(exception_index);
381 
382  if (exception_index == ARM_EXCEPTION_EL1_SERROR)
383  kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
384 }
385 
386 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
387  u64 elr_virt, u64 elr_phys,
388  u64 par, uintptr_t vcpu,
389  u64 far, u64 hpfar) {
390  u64 elr_in_kimg = __phys_to_kimg(elr_phys);
391  u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
392  u64 mode = spsr & PSR_MODE_MASK;
393  u64 panic_addr = elr_virt + hyp_offset;
394 
395  if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
396  kvm_err("Invalid host exception to nVHE hyp!\n");
397  } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
398  (esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) {
399  const char *file = NULL;
400  unsigned int line = 0;
401 
402  /* All hyp bugs, including warnings, are treated as fatal. */
403  if (!is_protected_kvm_enabled() ||
404  IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
405  struct bug_entry *bug = find_bug(elr_in_kimg);
406 
407  if (bug)
408  bug_get_file_line(bug, &file, &line);
409  }
410 
411  if (file)
412  kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
413  else
414  kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr,
415  (void *)(panic_addr + kaslr_offset()));
416  } else {
417  kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr,
418  (void *)(panic_addr + kaslr_offset()));
419  }
420 
421  /* Dump the nVHE hypervisor backtrace */
422  kvm_nvhe_dump_backtrace(hyp_offset);
423 
424  /*
425  * Hyp has panicked and we're going to handle that by panicking the
426  * kernel. The kernel offset will be revealed in the panic so we're
427  * also safe to reveal the hyp offset as a debugging aid for translating
428  * hyp VAs to vmlinux addresses.
429  */
430  kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
431 
432  panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
433  spsr, elr_virt, esr, far, hpfar, par, vcpu);
434 }
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
Definition: arch_timer.c:1107
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
Definition: arm.c:769
void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu)
int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2)
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:214
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:114
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:188
int(* exit_handle_fn)(struct kvm_vcpu *)
Definition: handle_exit.c:29
static int handle_sve(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:203
static int handle_hvc(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:37
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:283
void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr, u64 elr_virt, u64 elr_phys, u64 par, uintptr_t vcpu, u64 far, u64 hpfar)
Definition: handle_exit.c:386
static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:93
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
Definition: handle_exit.c:31
static exit_handle_fn arm_exit_handlers[]
Definition: handle_exit.c:255
static int handle_smc(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:56
static int kvm_handle_eret(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:220
static int handle_svc(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:244
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
Definition: handle_exit.c:366
static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:297
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
Definition: handle_exit.c:166
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
Definition: handle_exit.c:322
int kvm_smccc_call_handler(struct kvm_vcpu *vcpu)
Definition: hypercalls.c:263
void kvm_inject_vabt(struct kvm_vcpu *vcpu)
Definition: inject_fault.c:251
void kvm_inject_undefined(struct kvm_vcpu *vcpu)
Definition: inject_fault.c:225
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
Definition: kvm_main.c:4056
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
Definition: mmu.c:1619
void kvm_nvhe_dump_backtrace(unsigned long hyp_offset)
Definition: stacktrace.c:239
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3264
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3473
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3378
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3373
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3073
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
Definition: sys_regs.c:128
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3355
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
Definition: sys_regs.c:3350
kvm_pr_unimpl("%pV { Op0(%2u), Op1(%2u), CRn(%2u), CRm(%2u), Op2(%2u), func_%s },\n", &(struct va_format){ fmt, &va }, p->Op0, p->Op1, p->CRn, p->CRm, p->Op2, p->is_write ? "write" :"read")