KVM
paging_tmpl.h
Go to the documentation of this file.
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  * Yaniv Kamay <yaniv@qumranet.com>
15  * Avi Kivity <avi@qumranet.com>
16  */
17 
18 /*
19  * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
20  * as well as guest EPT tables, so the code in this file is compiled thrice,
21  * once per guest PTE type. The per-type defines are #undef'd at the end.
22  */
23 
24 #if PTTYPE == 64
25  #define pt_element_t u64
26  #define guest_walker guest_walker64
27  #define FNAME(name) paging##64_##name
28  #define PT_LEVEL_BITS 9
29  #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
30  #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
31  #define PT_HAVE_ACCESSED_DIRTY(mmu) true
32  #ifdef CONFIG_X86_64
33  #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
34  #else
35  #define PT_MAX_FULL_LEVELS 2
36  #endif
37 #elif PTTYPE == 32
38  #define pt_element_t u32
39  #define guest_walker guest_walker32
40  #define FNAME(name) paging##32_##name
41  #define PT_LEVEL_BITS 10
42  #define PT_MAX_FULL_LEVELS 2
43  #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
44  #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
45  #define PT_HAVE_ACCESSED_DIRTY(mmu) true
46 
47  #define PT32_DIR_PSE36_SIZE 4
48  #define PT32_DIR_PSE36_SHIFT 13
49  #define PT32_DIR_PSE36_MASK \
50  (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
51 #elif PTTYPE == PTTYPE_EPT
52  #define pt_element_t u64
53  #define guest_walker guest_walkerEPT
54  #define FNAME(name) ept_##name
55  #define PT_LEVEL_BITS 9
56  #define PT_GUEST_DIRTY_SHIFT 9
57  #define PT_GUEST_ACCESSED_SHIFT 8
58  #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
59  #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
60 #else
61  #error Invalid PTTYPE value
62 #endif
63 
64 /* Common logic, but per-type values. These also need to be undefined. */
65 #define PT_BASE_ADDR_MASK ((pt_element_t)__PT_BASE_ADDR_MASK)
66 #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
67 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
68 #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS)
69 
70 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
72 
73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
75 
76 /*
77  * The guest_walker structure emulates the behavior of the hardware page
78  * table walker.
79  */
80 struct guest_walker {
81  int level;
82  unsigned max_level;
90  unsigned int pte_access;
91  gfn_t gfn;
92  struct x86_exception fault;
93 };
94 
95 #if PTTYPE == 32
96 static inline gfn_t pse36_gfn_delta(u32 gpte)
97 {
98  int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
99 
100  return (gpte & PT32_DIR_PSE36_MASK) << shift;
101 }
102 #endif
103 
104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
105 {
106  return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
107 }
108 
109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
110  unsigned gpte)
111 {
112  unsigned mask;
113 
114  /* dirty bit is not supported, so no need to track it */
115  if (!PT_HAVE_ACCESSED_DIRTY(mmu))
116  return;
117 
118  BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
119 
120  mask = (unsigned)~ACC_WRITE_MASK;
121  /* Allow write access to dirty gptes */
122  mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
124  *access &= mask;
125 }
126 
127 static inline int FNAME(is_present_gpte)(unsigned long pte)
128 {
129 #if PTTYPE != PTTYPE_EPT
130  return pte & PT_PRESENT_MASK;
131 #else
132  return pte & 7;
133 #endif
134 }
135 
136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
137 {
138 #if PTTYPE != PTTYPE_EPT
139  return false;
140 #else
141  return __is_bad_mt_xwr(rsvd_check, gpte);
142 #endif
143 }
144 
145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
146 {
147  return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
148  FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
149 }
150 
151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
152  struct kvm_mmu_page *sp, u64 *spte,
153  u64 gpte)
154 {
155  if (!FNAME(is_present_gpte)(gpte))
156  goto no_present;
157 
158  /* Prefetch only accessed entries (unless A/D bits are disabled). */
159  if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
160  !(gpte & PT_GUEST_ACCESSED_MASK))
161  goto no_present;
162 
163  if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
164  goto no_present;
165 
166  return false;
167 
168 no_present:
169  drop_spte(vcpu->kvm, spte);
170  return true;
171 }
172 
173 /*
174  * For PTTYPE_EPT, a page table can be executable but not readable
175  * on supported processors. Therefore, set_spte does not automatically
176  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
177  * to signify readability since it isn't used in the EPT case
178  */
179 static inline unsigned FNAME(gpte_access)(u64 gpte)
180 {
181  unsigned access;
182 #if PTTYPE == PTTYPE_EPT
183  access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
184  ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
185  ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
186 #else
187  BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
188  BUILD_BUG_ON(ACC_EXEC_MASK != 1);
189  access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
190  /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
191  access ^= (gpte >> PT64_NX_SHIFT);
192 #endif
193 
194  return access;
195 }
196 
197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
198  struct kvm_mmu *mmu,
199  struct guest_walker *walker,
200  gpa_t addr, int write_fault)
201 {
202  unsigned level, index;
203  pt_element_t pte, orig_pte;
204  pt_element_t __user *ptep_user;
205  gfn_t table_gfn;
206  int ret;
207 
208  /* dirty/accessed bits are not supported, so no need to update them */
209  if (!PT_HAVE_ACCESSED_DIRTY(mmu))
210  return 0;
211 
212  for (level = walker->max_level; level >= walker->level; --level) {
213  pte = orig_pte = walker->ptes[level - 1];
214  table_gfn = walker->table_gfn[level - 1];
215  ptep_user = walker->ptep_user[level - 1];
216  index = offset_in_page(ptep_user) / sizeof(pt_element_t);
217  if (!(pte & PT_GUEST_ACCESSED_MASK)) {
218  trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
219  pte |= PT_GUEST_ACCESSED_MASK;
220  }
221  if (level == walker->level && write_fault &&
222  !(pte & PT_GUEST_DIRTY_MASK)) {
223  trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
224 #if PTTYPE == PTTYPE_EPT
225  if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
226  return -EINVAL;
227 #endif
228  pte |= PT_GUEST_DIRTY_MASK;
229  }
230  if (pte == orig_pte)
231  continue;
232 
233  /*
234  * If the slot is read-only, simply do not process the accessed
235  * and dirty bits. This is the correct thing to do if the slot
236  * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
237  * are only supported if the accessed and dirty bits are already
238  * set in the ROM (so that MMIO writes are never needed).
239  *
240  * Note that NPT does not allow this at all and faults, since
241  * it always wants nested page table entries for the guest
242  * page tables to be writable. And EPT works but will simply
243  * overwrite the read-only memory to set the accessed and dirty
244  * bits.
245  */
246  if (unlikely(!walker->pte_writable[level - 1]))
247  continue;
248 
249  ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
250  if (ret)
251  return ret;
252 
254  walker->ptes[level - 1] = pte;
255  }
256  return 0;
257 }
258 
259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
260 {
261  unsigned pkeys = 0;
262 #if PTTYPE == 64
263  pte_t pte = {.pte = gpte};
264 
265  pkeys = pte_flags_pkey(pte_flags(pte));
266 #endif
267  return pkeys;
268 }
269 
270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
271  unsigned int level, unsigned int gpte)
272 {
273  /*
274  * For EPT and PAE paging (both variants), bit 7 is either reserved at
275  * all level or indicates a huge page (ignoring CR3/EPTP). In either
276  * case, bit 7 being set terminates the walk.
277  */
278 #if PTTYPE == 32
279  /*
280  * 32-bit paging requires special handling because bit 7 is ignored if
281  * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is
282  * greater than the last level for which bit 7 is the PAGE_SIZE bit.
283  *
284  * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7
285  * is not reserved and does not indicate a large page at this level,
286  * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
287  */
288  gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
289 #endif
290  /*
291  * PG_LEVEL_4K always terminates. The RHS has bit 7 set
292  * iff level <= PG_LEVEL_4K, which for our purpose means
293  * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
294  */
295  gpte |= level - PG_LEVEL_4K - 1;
296 
297  return gpte & PT_PAGE_SIZE_MASK;
298 }
299 /*
300  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
301  */
302 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
303  struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
304  gpa_t addr, u64 access)
305 {
306  int ret;
307  pt_element_t pte;
308  pt_element_t __user *ptep_user;
309  gfn_t table_gfn;
310  u64 pt_access, pte_access;
311  unsigned index, accessed_dirty, pte_pkey;
312  u64 nested_access;
313  gpa_t pte_gpa;
314  bool have_ad;
315  int offset;
316  u64 walk_nx_mask = 0;
317  const int write_fault = access & PFERR_WRITE_MASK;
318  const int user_fault = access & PFERR_USER_MASK;
319  const int fetch_fault = access & PFERR_FETCH_MASK;
320  u16 errcode = 0;
321  gpa_t real_gpa;
322  gfn_t gfn;
323 
324  trace_kvm_mmu_pagetable_walk(addr, access);
325 retry_walk:
326  walker->level = mmu->cpu_role.base.level;
327  pte = kvm_mmu_get_guest_pgd(vcpu, mmu);
328  have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
329 
330 #if PTTYPE == 64
331  walk_nx_mask = 1ULL << PT64_NX_SHIFT;
332  if (walker->level == PT32E_ROOT_LEVEL) {
333  pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
334  trace_kvm_mmu_paging_element(pte, walker->level);
335  if (!FNAME(is_present_gpte)(pte))
336  goto error;
337  --walker->level;
338  }
339 #endif
340  walker->max_level = walker->level;
341 
342  /*
343  * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
344  * by the MOV to CR instruction are treated as reads and do not cause the
345  * processor to set the dirty flag in any EPT paging-structure entry.
346  */
347  nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
348 
349  pte_access = ~0;
350 
351  /*
352  * Queue a page fault for injection if this assertion fails, as callers
353  * assume that walker.fault contains sane info on a walk failure. I.e.
354  * avoid making the situation worse by inducing even worse badness
355  * between when the assertion fails and when KVM kicks the vCPU out to
356  * userspace (because the VM is bugged).
357  */
358  if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm))
359  goto error;
360 
361  ++walker->level;
362 
363  do {
364  struct kvm_memory_slot *slot;
365  unsigned long host_addr;
366 
367  pt_access = pte_access;
368  --walker->level;
369 
370  index = PT_INDEX(addr, walker->level);
371  table_gfn = gpte_to_gfn(pte);
372  offset = index * sizeof(pt_element_t);
373  pte_gpa = gfn_to_gpa(table_gfn) + offset;
374 
375  BUG_ON(walker->level < 1);
376  walker->table_gfn[walker->level - 1] = table_gfn;
377  walker->pte_gpa[walker->level - 1] = pte_gpa;
378 
379  real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
380  nested_access, &walker->fault);
381 
382  /*
383  * FIXME: This can happen if emulation (for of an INS/OUTS
384  * instruction) triggers a nested page fault. The exit
385  * qualification / exit info field will incorrectly have
386  * "guest page access" as the nested page fault's cause,
387  * instead of "guest page structure access". To fix this,
388  * the x86_exception struct should be augmented with enough
389  * information to fix the exit_qualification or exit_info_1
390  * fields.
391  */
392  if (unlikely(real_gpa == INVALID_GPA))
393  return 0;
394 
395  slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa));
396  if (!kvm_is_visible_memslot(slot))
397  goto error;
398 
399  host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa),
400  &walker->pte_writable[walker->level - 1]);
401  if (unlikely(kvm_is_error_hva(host_addr)))
402  goto error;
403 
404  ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
405  if (unlikely(__get_user(pte, ptep_user)))
406  goto error;
407  walker->ptep_user[walker->level - 1] = ptep_user;
408 
409  trace_kvm_mmu_paging_element(pte, walker->level);
410 
411  /*
412  * Inverting the NX it lets us AND it like other
413  * permission bits.
414  */
415  pte_access = pt_access & (pte ^ walk_nx_mask);
416 
417  if (unlikely(!FNAME(is_present_gpte)(pte)))
418  goto error;
419 
420  if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
421  errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
422  goto error;
423  }
424 
425  walker->ptes[walker->level - 1] = pte;
426 
427  /* Convert to ACC_*_MASK flags for struct guest_walker. */
428  walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
429  } while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
430 
431  pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
432  accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
433 
434  /* Convert to ACC_*_MASK flags for struct guest_walker. */
435  walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
436  errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
437  if (unlikely(errcode))
438  goto error;
439 
440  gfn = gpte_to_gfn_lvl(pte, walker->level);
441  gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
442 
443 #if PTTYPE == 32
444  if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
445  gfn += pse36_gfn_delta(pte);
446 #endif
447 
448  real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
449  if (real_gpa == INVALID_GPA)
450  return 0;
451 
452  walker->gfn = real_gpa >> PAGE_SHIFT;
453 
454  if (!write_fault)
455  FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
456  else
457  /*
458  * On a write fault, fold the dirty bit into accessed_dirty.
459  * For modes without A/D bits support accessed_dirty will be
460  * always clear.
461  */
462  accessed_dirty &= pte >>
464 
465  if (unlikely(!accessed_dirty)) {
466  ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
467  addr, write_fault);
468  if (unlikely(ret < 0))
469  goto error;
470  else if (ret)
471  goto retry_walk;
472  }
473 
474  return 1;
475 
476 error:
477  errcode |= write_fault | user_fault;
478  if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
479  errcode |= PFERR_FETCH_MASK;
480 
481  walker->fault.vector = PF_VECTOR;
482  walker->fault.error_code_valid = true;
483  walker->fault.error_code = errcode;
484 
485 #if PTTYPE == PTTYPE_EPT
486  /*
487  * Use PFERR_RSVD_MASK in error_code to tell if EPT
488  * misconfiguration requires to be injected. The detection is
489  * done by is_rsvd_bits_set() above.
490  *
491  * We set up the value of exit_qualification to inject:
492  * [2:0] - Derive from the access bits. The exit_qualification might be
493  * out of date if it is serving an EPT misconfiguration.
494  * [5:3] - Calculated by the page walk of the guest EPT page tables
495  * [7:8] - Derived from [7:8] of real exit_qualification
496  *
497  * The other bits are set to 0.
498  */
499  if (!(errcode & PFERR_RSVD_MASK)) {
500  vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
501  EPT_VIOLATION_GVA_TRANSLATED);
502  if (write_fault)
503  vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
504  if (user_fault)
505  vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
506  if (fetch_fault)
507  vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
508 
509  /*
510  * Note, pte_access holds the raw RWX bits from the EPTE, not
511  * ACC_*_MASK flags!
512  */
513  vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
514  EPT_VIOLATION_RWX_SHIFT;
515  }
516 #endif
517  walker->fault.address = addr;
518  walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
519  walker->fault.async_page_fault = false;
520 
521  trace_kvm_mmu_walker_error(walker->fault.error_code);
522  return 0;
523 }
524 
525 static int FNAME(walk_addr)(struct guest_walker *walker,
526  struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
527 {
528  return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
529  access);
530 }
531 
532 static bool
533 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534  u64 *spte, pt_element_t gpte)
535 {
536  struct kvm_memory_slot *slot;
537  unsigned pte_access;
538  gfn_t gfn;
539  kvm_pfn_t pfn;
540 
541  if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
542  return false;
543 
544  gfn = gpte_to_gfn(gpte);
545  pte_access = sp->role.access & FNAME(gpte_access)(gpte);
546  FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
547 
548  slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, pte_access & ACC_WRITE_MASK);
549  if (!slot)
550  return false;
551 
552  pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
553  if (is_error_pfn(pfn))
554  return false;
555 
556  mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
558  return true;
559 }
560 
561 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
562  struct guest_walker *gw, int level)
563 {
564  pt_element_t curr_pte;
565  gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
566  u64 mask;
567  int r, index;
568 
569  if (level == PG_LEVEL_4K) {
570  mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
571  base_gpa = pte_gpa & ~mask;
572  index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
573 
574  r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
575  gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
576  curr_pte = gw->prefetch_ptes[index];
577  } else
579  &curr_pte, sizeof(curr_pte));
580 
581  return r || curr_pte != gw->ptes[level - 1];
582 }
583 
584 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
585  u64 *sptep)
586 {
587  struct kvm_mmu_page *sp;
588  pt_element_t *gptep = gw->prefetch_ptes;
589  u64 *spte;
590  int i;
591 
592  sp = sptep_to_sp(sptep);
593 
594  if (sp->role.level > PG_LEVEL_4K)
595  return;
596 
597  /*
598  * If addresses are being invalidated, skip prefetching to avoid
599  * accidentally prefetching those addresses.
600  */
601  if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
602  return;
603 
604  if (sp->role.direct)
605  return __direct_pte_prefetch(vcpu, sp, sptep);
606 
607  i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
608  spte = sp->spt + i;
609 
610  for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
611  if (spte == sptep)
612  continue;
613 
614  if (is_shadow_present_pte(*spte))
615  continue;
616 
617  if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i]))
618  break;
619  }
620 }
621 
622 /*
623  * Fetch a shadow pte for a specific level in the paging hierarchy.
624  * If the guest tries to write a write-protected page, we need to
625  * emulate this operation, return 1 to indicate this case.
626  */
627 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
628  struct guest_walker *gw)
629 {
630  struct kvm_mmu_page *sp = NULL;
631  struct kvm_shadow_walk_iterator it;
632  unsigned int direct_access, access;
633  int top_level, ret;
634  gfn_t base_gfn = fault->gfn;
635 
636  WARN_ON_ONCE(gw->gfn != base_gfn);
637  direct_access = gw->pte_access;
638 
639  top_level = vcpu->arch.mmu->cpu_role.base.level;
640  if (top_level == PT32E_ROOT_LEVEL)
641  top_level = PT32_ROOT_LEVEL;
642  /*
643  * Verify that the top-level gpte is still there. Since the page
644  * is a root page, it is either write protected (and cannot be
645  * changed from now on) or it is invalid (in which case, we don't
646  * really care if it changes underneath us after this point).
647  */
648  if (FNAME(gpte_changed)(vcpu, gw, top_level))
649  goto out_gpte_changed;
650 
651  if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
652  goto out_gpte_changed;
653 
654  /*
655  * Load a new root and retry the faulting instruction in the extremely
656  * unlikely scenario that the guest root gfn became visible between
657  * loading a dummy root and handling the resulting page fault, e.g. if
658  * userspace create a memslot in the interim.
659  */
660  if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) {
661  kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu);
662  goto out_gpte_changed;
663  }
664 
665  for_each_shadow_entry(vcpu, fault->addr, it) {
666  gfn_t table_gfn;
667 
669  if (it.level == gw->level)
670  break;
671 
672  table_gfn = gw->table_gfn[it.level - 2];
673  access = gw->pt_access[it.level - 2];
674  sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
675  false, access);
676 
677  if (sp != ERR_PTR(-EEXIST)) {
678  /*
679  * We must synchronize the pagetable before linking it
680  * because the guest doesn't need to flush tlb when
681  * the gpte is changed from non-present to present.
682  * Otherwise, the guest may use the wrong mapping.
683  *
684  * For PG_LEVEL_4K, kvm_mmu_get_page() has already
685  * synchronized it transiently via kvm_sync_page().
686  *
687  * For higher level pagetable, we synchronize it via
688  * the slower mmu_sync_children(). If it needs to
689  * break, some progress has been made; return
690  * RET_PF_RETRY and retry on the next #PF.
691  * KVM_REQ_MMU_SYNC is not necessary but it
692  * expedites the process.
693  */
694  if (sp->unsync_children &&
695  mmu_sync_children(vcpu, sp, false))
696  return RET_PF_RETRY;
697  }
698 
699  /*
700  * Verify that the gpte in the page we've just write
701  * protected is still there.
702  */
703  if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
704  goto out_gpte_changed;
705 
706  if (sp != ERR_PTR(-EEXIST))
707  link_shadow_page(vcpu, it.sptep, sp);
708 
709  if (fault->write && table_gfn == fault->gfn)
710  fault->write_fault_to_shadow_pgtable = true;
711  }
712 
713  /*
714  * Adjust the hugepage size _after_ resolving indirect shadow pages.
715  * KVM doesn't support mapping hugepages into the guest for gfns that
716  * are being shadowed by KVM, i.e. allocating a new shadow page may
717  * affect the allowed hugepage size.
718  */
719  kvm_mmu_hugepage_adjust(vcpu, fault);
720 
721  trace_kvm_mmu_spte_requested(fault);
722 
723  for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
724  /*
725  * We cannot overwrite existing page tables with an NX
726  * large page, as the leaf could be executable.
727  */
729  disallowed_hugepage_adjust(fault, *it.sptep, it.level);
730 
731  base_gfn = gfn_round_for_level(fault->gfn, it.level);
732  if (it.level == fault->goal_level)
733  break;
734 
735  validate_direct_spte(vcpu, it.sptep, direct_access);
736 
737  sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
738  true, direct_access);
739  if (sp == ERR_PTR(-EEXIST))
740  continue;
741 
742  link_shadow_page(vcpu, it.sptep, sp);
743  if (fault->huge_page_disallowed)
744  account_nx_huge_page(vcpu->kvm, sp,
745  fault->req_level >= it.level);
746  }
747 
748  if (WARN_ON_ONCE(it.level != fault->goal_level))
749  return -EFAULT;
750 
751  ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
752  base_gfn, fault->pfn, fault);
753  if (ret == RET_PF_SPURIOUS)
754  return ret;
755 
756  FNAME(pte_prefetch)(vcpu, gw, it.sptep);
757  return ret;
758 
759 out_gpte_changed:
760  return RET_PF_RETRY;
761 }
762 
763 /*
764  * Page fault handler. There are several causes for a page fault:
765  * - there is no shadow pte for the guest pte
766  * - write access through a shadow pte marked read only so that we can set
767  * the dirty bit
768  * - write access to a shadow pte marked read only so we can update the page
769  * dirty bitmap, when userspace requests it
770  * - mmio access; in this case we will never install a present shadow pte
771  * - normal guest page fault due to the guest pte marked not present, not
772  * writable, or not executable
773  *
774  * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
775  * a negative value on error.
776  */
777 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
778 {
779  struct guest_walker walker;
780  int r;
781 
782  WARN_ON_ONCE(fault->is_tdp);
783 
784  /*
785  * Look up the guest pte for the faulting address.
786  * If PFEC.RSVD is set, this is a shadow page fault.
787  * The bit needs to be cleared before walking guest page tables.
788  */
789  r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
790  fault->error_code & ~PFERR_RSVD_MASK);
791 
792  /*
793  * The page is not mapped by the guest. Let the guest handle it.
794  */
795  if (!r) {
796  if (!fault->prefetch)
797  kvm_inject_emulated_page_fault(vcpu, &walker.fault);
798 
799  return RET_PF_RETRY;
800  }
801 
802  fault->gfn = walker.gfn;
803  fault->max_level = walker.level;
804  fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
805 
806  if (page_fault_handle_page_track(vcpu, fault)) {
808  return RET_PF_EMULATE;
809  }
810 
811  r = mmu_topup_memory_caches(vcpu, true);
812  if (r)
813  return r;
814 
815  r = kvm_faultin_pfn(vcpu, fault, walker.pte_access);
816  if (r != RET_PF_CONTINUE)
817  return r;
818 
819  /*
820  * Do not change pte_access if the pfn is a mmio page, otherwise
821  * we will cache the incorrect access into mmio spte.
822  */
823  if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
824  !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
825  walker.pte_access |= ACC_WRITE_MASK;
826  walker.pte_access &= ~ACC_USER_MASK;
827 
828  /*
829  * If we converted a user page to a kernel page,
830  * so that the kernel can write to it when cr0.wp=0,
831  * then we should prevent the kernel from executing it
832  * if SMEP is enabled.
833  */
834  if (is_cr4_smep(vcpu->arch.mmu))
835  walker.pte_access &= ~ACC_EXEC_MASK;
836  }
837 
838  r = RET_PF_RETRY;
839  write_lock(&vcpu->kvm->mmu_lock);
840 
841  if (is_page_fault_stale(vcpu, fault))
842  goto out_unlock;
843 
844  r = make_mmu_pages_available(vcpu);
845  if (r)
846  goto out_unlock;
847  r = FNAME(fetch)(vcpu, fault, &walker);
848 
849 out_unlock:
850  write_unlock(&vcpu->kvm->mmu_lock);
852  return r;
853 }
854 
855 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
856 {
857  int offset = 0;
858 
859  WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
860 
861  if (PTTYPE == 32)
862  offset = sp->role.quadrant << SPTE_LEVEL_BITS;
863 
864  return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
865 }
866 
867 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
868 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
869  gpa_t addr, u64 access,
870  struct x86_exception *exception)
871 {
872  struct guest_walker walker;
873  gpa_t gpa = INVALID_GPA;
874  int r;
875 
876 #ifndef CONFIG_X86_64
877  /* A 64-bit GVA should be impossible on 32-bit KVM. */
878  WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
879 #endif
880 
881  r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
882 
883  if (r) {
884  gpa = gfn_to_gpa(walker.gfn);
885  gpa |= addr & ~PAGE_MASK;
886  } else if (exception)
887  *exception = walker.fault;
888 
889  return gpa;
890 }
891 
892 /*
893  * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
894  * safe because:
895  * - The spte has a reference to the struct page, so the pfn for a given gfn
896  * can't change unless all sptes pointing to it are nuked first.
897  *
898  * Returns
899  * < 0: failed to sync spte
900  * 0: the spte is synced and no tlb flushing is required
901  * > 0: the spte is synced and tlb flushing is required
902  */
903 static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
904 {
905  bool host_writable;
906  gpa_t first_pte_gpa;
907  u64 *sptep, spte;
908  struct kvm_memory_slot *slot;
909  unsigned pte_access;
910  pt_element_t gpte;
911  gpa_t pte_gpa;
912  gfn_t gfn;
913 
914  if (WARN_ON_ONCE(!sp->spt[i]))
915  return 0;
916 
917  first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
918  pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
919 
920  if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
921  sizeof(pt_element_t)))
922  return -1;
923 
924  if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte))
925  return 1;
926 
927  gfn = gpte_to_gfn(gpte);
928  pte_access = sp->role.access;
929  pte_access &= FNAME(gpte_access)(gpte);
930  FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
931 
932  if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
933  return 0;
934 
935  /*
936  * Drop the SPTE if the new protections would result in a RWX=0
937  * SPTE or if the gfn is changing. The RWX=0 case only affects
938  * EPT with execute-only support, i.e. EPT without an effective
939  * "present" bit, as all other paging modes will create a
940  * read-only SPTE if pte_access is zero.
941  */
942  if ((!pte_access && !shadow_present_mask) ||
943  gfn != kvm_mmu_page_get_gfn(sp, i)) {
944  drop_spte(vcpu->kvm, &sp->spt[i]);
945  return 1;
946  }
947  /*
948  * Do nothing if the permissions are unchanged. The existing SPTE is
949  * still, and prefetch_invalid_gpte() has verified that the A/D bits
950  * are set in the "new" gPTE, i.e. there is no danger of missing an A/D
951  * update due to A/D bits being set in the SPTE but not the gPTE.
952  */
953  if (kvm_mmu_page_get_access(sp, i) == pte_access)
954  return 0;
955 
956  /* Update the shadowed access bits in case they changed. */
957  kvm_mmu_page_set_access(sp, i, pte_access);
958 
959  sptep = &sp->spt[i];
960  spte = *sptep;
961  host_writable = spte & shadow_host_writable_mask;
962  slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
963  make_spte(vcpu, sp, slot, pte_access, gfn,
964  spte_to_pfn(spte), spte, true, false,
965  host_writable, &spte);
966 
967  return mmu_spte_update(sptep, spte);
968 }
969 
970 #undef pt_element_t
971 #undef guest_walker
972 #undef FNAME
973 #undef PT_BASE_ADDR_MASK
974 #undef PT_INDEX
975 #undef PT_LVL_ADDR_MASK
976 #undef PT_LVL_OFFSET_MASK
977 #undef PT_LEVEL_BITS
978 #undef PT_MAX_FULL_LEVELS
979 #undef gpte_to_gfn
980 #undef gpte_to_gfn_lvl
981 #undef PT_GUEST_ACCESSED_MASK
982 #undef PT_GUEST_DIRTY_MASK
983 #undef PT_GUEST_DIRTY_SHIFT
984 #undef PT_GUEST_ACCESSED_SHIFT
985 #undef PT_HAVE_ACCESSED_DIRTY
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
Definition: kvm_main.c:3403
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:3669
struct kvm_memory_slot * kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
Definition: kvm_main.c:2636
kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
Definition: kvm_main.c:3078
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, bool *writable)
Definition: kvm_main.c:2762
void kvm_release_pfn_clean(kvm_pfn_t pfn)
Definition: kvm_main.c:3241
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned direct_access)
Definition: mmu.c:2470
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
Definition: mmu.c:679
static int is_cpuid_PSE36(void)
Definition: mmu.c:331
static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *sptep)
Definition: mmu.c:3005
static unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
Definition: mmu.c:263
static int mmu_sync_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *parent, bool can_yield)
Definition: mmu.c:2093
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, unsigned int access)
Definition: mmu.c:4799
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
Definition: mmu.c:2424
static void drop_spte(struct kvm *kvm, u64 *sptep)
Definition: mmu.c:1195
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
Definition: mmu.c:520
#define for_each_shadow_entry(_vcpu, _addr, _walker)
Definition: mmu.c:169
#define PTTYPE
Definition: mmu.c:4824
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
Definition: mmu.c:2402
static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, unsigned int access)
Definition: mmu.c:4400
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, struct kvm_mmu_page *sp)
Definition: mmu.c:2464
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
Definition: mmu.c:717
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
Definition: mmu.c:4208
static struct kvm_memory_slot * gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
Definition: mmu.c:907
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, u64 *sptep, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, struct kvm_page_fault *fault)
Definition: mmu.c:2906
static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, unsigned int access)
Definition: mmu.c:773
static struct kvm_mmu_page * kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, bool direct, unsigned int access)
Definition: mmu.c:2353
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
Definition: mmu.c:2714
#define PTE_PREFETCH_NUM
Definition: mmu.c:119
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
Definition: mmu.c:3180
static bool is_page_fault_stale(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
Definition: mmu.c:4462
static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, bool nx_huge_page_possible)
Definition: mmu.c:866
static void clear_sp_write_flooding_count(u64 *spte)
Definition: mmu.c:2140
static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
Definition: mmu.c:734
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
Definition: mmu.c:3216
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
Definition: mmu.c:4227
#define PT_PRESENT_MASK
Definition: mmu.h:14
#define PT_WRITABLE_MASK
Definition: mmu.h:15
#define PT32E_ROOT_LEVEL
Definition: mmu.h:37
static gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gpa_t gpa, u64 access, struct x86_exception *exception)
Definition: mmu.h:313
#define PT64_NX_SHIFT
Definition: mmu.h:27
#define PT_PAGE_SIZE_MASK
Definition: mmu.h:24
#define PT_WRITABLE_SHIFT
Definition: mmu.h:11
static u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned pte_access, unsigned pte_pkey, u64 access)
Definition: mmu.h:194
#define PT32_ROOT_LEVEL
Definition: mmu.h:36
#define PT_USER_MASK
Definition: mmu.h:16
static bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
Definition: mmu_internal.h:45
static gfn_t gfn_round_for_level(gfn_t gfn, int level)
Definition: mmu_internal.h:161
@ RET_PF_RETRY
Definition: mmu_internal.h:275
@ RET_PF_EMULATE
Definition: mmu_internal.h:276
@ RET_PF_SPURIOUS
Definition: mmu_internal.h:279
@ RET_PF_CONTINUE
Definition: mmu_internal.h:274
static int FNAME() sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
Definition: paging_tmpl.h:903
#define PT_LVL_OFFSET_MASK(lvl)
Definition: paging_tmpl.h:67
static int FNAME() walk_addr(struct guest_walker *walker, struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
Definition: paging_tmpl.h:525
static bool FNAME() is_last_gpte(struct kvm_mmu *mmu, unsigned int level, unsigned int gpte)
Definition: paging_tmpl.h:270
static gpa_t FNAME() get_level1_sp_gpa(struct kvm_mmu_page *sp)
Definition: paging_tmpl.h:855
static void FNAME() pte_prefetch(struct kvm_vcpu *vcpu, struct guest_walker *gw, u64 *sptep)
Definition: paging_tmpl.h:584
static bool FNAME() gpte_changed(struct kvm_vcpu *vcpu, struct guest_walker *gw, int level)
Definition: paging_tmpl.h:561
static unsigned FNAME() gpte_pkeys(struct kvm_vcpu *vcpu, u64 gpte)
Definition: paging_tmpl.h:259
static int FNAME() page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
Definition: paging_tmpl.h:777
static unsigned FNAME() gpte_access(u64 gpte)
Definition: paging_tmpl.h:179
#define PT_GUEST_DIRTY_MASK
Definition: paging_tmpl.h:70
#define PT_HAVE_ACCESSED_DIRTY(mmu)
Definition: paging_tmpl.h:58
#define PT_INDEX(addr, lvl)
Definition: paging_tmpl.h:68
#define FNAME(name)
Definition: paging_tmpl.h:54
#define gpte_to_gfn(pte)
Definition: paging_tmpl.h:74
static bool FNAME() is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
Definition: paging_tmpl.h:145
static gpa_t FNAME() gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gpa_t addr, u64 access, struct x86_exception *exception)
Definition: paging_tmpl.h:868
static bool FNAME() is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 gpte)
Definition: paging_tmpl.h:136
static void FNAME() protect_clean_gpte(struct kvm_mmu *mmu, unsigned *access, unsigned gpte)
Definition: paging_tmpl.h:109
static int FNAME() update_accessed_dirty_bits(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, struct guest_walker *walker, gpa_t addr, int write_fault)
Definition: paging_tmpl.h:197
static bool FNAME() prefetch_gpte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, pt_element_t gpte)
Definition: paging_tmpl.h:533
static int FNAME() fetch(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, struct guest_walker *gw)
Definition: paging_tmpl.h:627
static int FNAME() walk_addr_generic(struct guest_walker *walker, struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gpa_t addr, u64 access)
Definition: paging_tmpl.h:302
#define PT_GUEST_ACCESSED_SHIFT
Definition: paging_tmpl.h:57
#define gpte_to_gfn_lvl
Definition: paging_tmpl.h:73
#define pt_element_t
Definition: paging_tmpl.h:52
#define PT_LVL_ADDR_MASK(lvl)
Definition: paging_tmpl.h:66
static bool FNAME() prefetch_invalid_gpte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, u64 gpte)
Definition: paging_tmpl.h:151
static int FNAME() is_present_gpte(unsigned long pte)
Definition: paging_tmpl.h:127
#define PT_GUEST_DIRTY_SHIFT
Definition: paging_tmpl.h:56
#define PT_GUEST_ACCESSED_MASK
Definition: paging_tmpl.h:71
#define PT_MAX_FULL_LEVELS
Definition: paging_tmpl.h:59
u64 __read_mostly shadow_host_writable_mask
Definition: spte.c:27
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, const struct kvm_memory_slot *slot, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool prefetch, bool can_unsync, bool host_writable, u64 *new_spte)
Definition: spte.c:137
u64 __read_mostly shadow_present_mask
Definition: spte.c:37
#define ACC_USER_MASK
Definition: spte.h:48
#define ACC_WRITE_MASK
Definition: spte.h:47
static bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
Definition: spte.h:356
static struct kvm_mmu_page * sptep_to_sp(u64 *sptep)
Definition: spte.h:235
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
Definition: spte.h:362
static bool is_shadow_present_pte(u64 pte)
Definition: spte.h:258
#define SPTE_LEVEL_BITS
Definition: spte.h:55
static kvm_pfn_t spte_to_pfn(u64 pte)
Definition: spte.h:328
#define ACC_EXEC_MASK
Definition: spte.h:46
static int spte_index(u64 *sptep)
Definition: spte.h:208
bool pte_writable[PT_MAX_FULL_LEVELS]
Definition: paging_tmpl.h:88
gpa_t pte_gpa[PT_MAX_FULL_LEVELS]
Definition: paging_tmpl.h:86
unsigned int pte_access
Definition: paging_tmpl.h:90
gfn_t table_gfn[PT_MAX_FULL_LEVELS]
Definition: paging_tmpl.h:83
pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]
Definition: paging_tmpl.h:85
unsigned max_level
Definition: paging_tmpl.h:82
struct x86_exception fault
Definition: paging_tmpl.h:92
unsigned int pt_access[PT_MAX_FULL_LEVELS]
Definition: paging_tmpl.h:89
pt_element_t __user * ptep_user[PT_MAX_FULL_LEVELS]
Definition: paging_tmpl.h:87
pt_element_t ptes[PT_MAX_FULL_LEVELS]
Definition: paging_tmpl.h:84
unsigned int unsync_children
Definition: mmu_internal.h:104
union kvm_mmu_page_role role
Definition: mmu_internal.h:80
bool write_fault_to_shadow_pgtable
Definition: mmu_internal.h:249
const bool write
Definition: mmu_internal.h:198
bool huge_page_disallowed
Definition: mmu_internal.h:212
kvm_pfn_t pfn
Definition: mmu_internal.h:240
const bool nx_huge_page_workaround_enabled
Definition: mmu_internal.h:206
struct kvm_memory_slot * slot
Definition: mmu_internal.h:236
const gpa_t addr
Definition: mmu_internal.h:192
bool error_code_valid
Definition: kvm_emulate.h:24
bool nested_page_fault
Definition: kvm_emulate.h:26
void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
Definition: x86.c:796
static bool is_long_mode(struct kvm_vcpu *vcpu)
Definition: x86.h:143
static bool is_pae(struct kvm_vcpu *vcpu)
Definition: x86.h:188