KVM
pmu.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  * Avi Kivity <avi@redhat.com>
9  * Gleb Natapov <gleb@redhat.com>
10  * Wei Huang <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25 
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28 
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
31 
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34  X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35  X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36  /* Instruction-Accurate PDIR (PDIR++) */
37  X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38  {}
39 };
40 
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43  X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44  {}
45 };
46 
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  * gp counters are stored in gp_counters[] and fixed counters are stored
51  * in fixed_counters[] respectively. Both of them are part of "struct
52  * kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  * However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  * has MSR_K7_PERFCTRn and, for families 15H and later,
58  * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  * aliased to MSR_K7_PERFCTRn.
60  * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  * that it also supports fixed counters. idx can be used to as index to
64  * gp and fixed counters.
65  * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  * code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  * all perf counters (both gp and fixed). The mapping relationship
68  * between pmc and perf counters is as the following:
69  * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74 
76 
77 #define KVM_X86_PMU_OP(func) \
78  DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
79  *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82 
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85  memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86 
87 #define __KVM_X86_PMU_OP(func) \
88  static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90  WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95 
96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98  struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99  bool skip_pmi = false;
100 
101  if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102  if (!in_pmi) {
103  /*
104  * TODO: KVM is currently _choosing_ to not generate records
105  * for emulated instructions, avoiding BUFFER_OVF PMI when
106  * there are no records. Strictly speaking, it should be done
107  * as well in the right context to improve sampling accuracy.
108  */
109  skip_pmi = true;
110  } else {
111  /* Indicate PEBS overflow PMI to guest. */
112  skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113  (unsigned long *)&pmu->global_status);
114  }
115  } else {
116  __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117  }
118 
119  if (pmc->intr && !skip_pmi)
120  kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122 
123 static void kvm_perf_overflow(struct perf_event *perf_event,
124  struct perf_sample_data *data,
125  struct pt_regs *regs)
126 {
127  struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128 
129  /*
130  * Ignore asynchronous overflow events for counters that are scheduled
131  * to be reprogrammed, e.g. if a PMI for the previous event races with
132  * KVM's handling of a related guest WRMSR.
133  */
134  if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135  return;
136 
137  __kvm_perf_overflow(pmc, true);
138 
139  kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141 
142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144  /*
145  * For some model specific pebs counters with special capabilities
146  * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147  * level to the maximum value (currently 3, backwards compatible)
148  * so that the perf subsystem would assign specific hardware counter
149  * with that capability for vPMC.
150  */
151  if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152  (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153  return 3;
154 
155  /*
156  * The non-zero precision level of guest event makes the ordinary
157  * guest event becomes a guest PEBS event and triggers the host
158  * PEBS PMI handler to determine whether the PEBS overflow PMI
159  * comes from the host counters or the guest.
160  */
161  return 1;
162 }
163 
164 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
165 {
166  u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
167 
168  if (!sample_period)
169  sample_period = pmc_bitmask(pmc) + 1;
170  return sample_period;
171 }
172 
173 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
174  bool exclude_user, bool exclude_kernel,
175  bool intr)
176 {
177  struct kvm_pmu *pmu = pmc_to_pmu(pmc);
178  struct perf_event *event;
179  struct perf_event_attr attr = {
180  .type = type,
181  .size = sizeof(attr),
182  .pinned = true,
183  .exclude_idle = true,
184  .exclude_host = 1,
185  .exclude_user = exclude_user,
186  .exclude_kernel = exclude_kernel,
187  .config = config,
188  };
189  bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
190 
191  attr.sample_period = get_sample_period(pmc, pmc->counter);
192 
193  if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
194  guest_cpuid_is_intel(pmc->vcpu)) {
195  /*
196  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
197  * period. Just clear the sample period so at least
198  * allocating the counter doesn't fail.
199  */
200  attr.sample_period = 0;
201  }
202  if (pebs) {
203  /*
204  * For most PEBS hardware events, the difference in the software
205  * precision levels of guest and host PEBS events will not affect
206  * the accuracy of the PEBS profiling result, because the "event IP"
207  * in the PEBS record is calibrated on the guest side.
208  */
209  attr.precise_ip = pmc_get_pebs_precise_level(pmc);
210  }
211 
212  event = perf_event_create_kernel_counter(&attr, -1, current,
213  kvm_perf_overflow, pmc);
214  if (IS_ERR(event)) {
215  pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
216  PTR_ERR(event), pmc->idx);
217  return PTR_ERR(event);
218  }
219 
220  pmc->perf_event = event;
221  pmc_to_pmu(pmc)->event_count++;
222  pmc->is_paused = false;
223  pmc->intr = intr || pebs;
224  return 0;
225 }
226 
227 static bool pmc_pause_counter(struct kvm_pmc *pmc)
228 {
229  u64 counter = pmc->counter;
230  u64 prev_counter;
231 
232  /* update counter, reset event value to avoid redundant accumulation */
233  if (pmc->perf_event && !pmc->is_paused)
234  counter += perf_event_pause(pmc->perf_event, true);
235 
236  /*
237  * Snapshot the previous counter *after* accumulating state from perf.
238  * If overflow already happened, hardware (via perf) is responsible for
239  * generating a PMI. KVM just needs to detect overflow on emulated
240  * counter events that haven't yet been processed.
241  */
242  prev_counter = counter & pmc_bitmask(pmc);
243 
244  counter += pmc->emulated_counter;
245  pmc->counter = counter & pmc_bitmask(pmc);
246 
247  pmc->emulated_counter = 0;
248  pmc->is_paused = true;
249 
250  return pmc->counter < prev_counter;
251 }
252 
253 static bool pmc_resume_counter(struct kvm_pmc *pmc)
254 {
255  if (!pmc->perf_event)
256  return false;
257 
258  /* recalibrate sample period and check if it's accepted by perf core */
259  if (is_sampling_event(pmc->perf_event) &&
260  perf_event_period(pmc->perf_event,
261  get_sample_period(pmc, pmc->counter)))
262  return false;
263 
264  if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
265  (!!pmc->perf_event->attr.precise_ip))
266  return false;
267 
268  /* reuse perf_event to serve as pmc_reprogram_counter() does*/
269  perf_event_enable(pmc->perf_event);
270  pmc->is_paused = false;
271 
272  return true;
273 }
274 
275 static void pmc_release_perf_event(struct kvm_pmc *pmc)
276 {
277  if (pmc->perf_event) {
278  perf_event_release_kernel(pmc->perf_event);
279  pmc->perf_event = NULL;
280  pmc->current_config = 0;
281  pmc_to_pmu(pmc)->event_count--;
282  }
283 }
284 
285 static void pmc_stop_counter(struct kvm_pmc *pmc)
286 {
287  if (pmc->perf_event) {
288  pmc->counter = pmc_read_counter(pmc);
290  }
291 }
292 
293 static void pmc_update_sample_period(struct kvm_pmc *pmc)
294 {
295  if (!pmc->perf_event || pmc->is_paused ||
296  !is_sampling_event(pmc->perf_event))
297  return;
298 
299  perf_event_period(pmc->perf_event,
300  get_sample_period(pmc, pmc->counter));
301 }
302 
303 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
304 {
305  /*
306  * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
307  * read-modify-write. Adjust the counter value so that its value is
308  * relative to the current count, as reading the current count from
309  * perf is faster than pausing and repgrogramming the event in order to
310  * reset it to '0'. Note, this very sneakily offsets the accumulated
311  * emulated count too, by using pmc_read_counter()!
312  */
313  pmc->emulated_counter = 0;
314  pmc->counter += val - pmc_read_counter(pmc);
315  pmc->counter &= pmc_bitmask(pmc);
317 }
319 
320 static int filter_cmp(const void *pa, const void *pb, u64 mask)
321 {
322  u64 a = *(u64 *)pa & mask;
323  u64 b = *(u64 *)pb & mask;
324 
325  return (a > b) - (a < b);
326 }
327 
328 
329 static int filter_sort_cmp(const void *pa, const void *pb)
330 {
331  return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
332  KVM_PMU_MASKED_ENTRY_EXCLUDE));
333 }
334 
335 /*
336  * For the event filter, searching is done on the 'includes' list and
337  * 'excludes' list separately rather than on the 'events' list (which
338  * has both). As a result the exclude bit can be ignored.
339  */
340 static int filter_event_cmp(const void *pa, const void *pb)
341 {
342  return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
343 }
344 
345 static int find_filter_index(u64 *events, u64 nevents, u64 key)
346 {
347  u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
349 
350  if (!fe)
351  return -1;
352 
353  return fe - events;
354 }
355 
356 static bool is_filter_entry_match(u64 filter_event, u64 umask)
357 {
358  u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
359  u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
360 
361  BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
362  (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
363  ARCH_PERFMON_EVENTSEL_UMASK);
364 
365  return (umask & mask) == match;
366 }
367 
368 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
369 {
370  u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
371  u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
372  int i, index;
373 
374  index = find_filter_index(events, nevents, event_select);
375  if (index < 0)
376  return false;
377 
378  /*
379  * Entries are sorted by the event select. Walk the list in both
380  * directions to process all entries with the targeted event select.
381  */
382  for (i = index; i < nevents; i++) {
383  if (filter_event_cmp(&events[i], &event_select))
384  break;
385 
386  if (is_filter_entry_match(events[i], umask))
387  return true;
388  }
389 
390  for (i = index - 1; i >= 0; i--) {
391  if (filter_event_cmp(&events[i], &event_select))
392  break;
393 
394  if (is_filter_entry_match(events[i], umask))
395  return true;
396  }
397 
398  return false;
399 }
400 
401 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
402  u64 eventsel)
403 {
404  if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
405  !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
406  return f->action == KVM_PMU_EVENT_ALLOW;
407 
408  return f->action == KVM_PMU_EVENT_DENY;
409 }
410 
411 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
412  int idx)
413 {
414  int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
415 
416  if (filter->action == KVM_PMU_EVENT_DENY &&
417  test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
418  return false;
419  if (filter->action == KVM_PMU_EVENT_ALLOW &&
420  !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421  return false;
422 
423  return true;
424 }
425 
426 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
427 {
428  struct kvm_x86_pmu_event_filter *filter;
429  struct kvm *kvm = pmc->vcpu->kvm;
430 
431  filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
432  if (!filter)
433  return true;
434 
435  if (pmc_is_gp(pmc))
436  return is_gp_event_allowed(filter, pmc->eventsel);
437 
438  return is_fixed_event_allowed(filter, pmc->idx);
439 }
440 
441 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
442 {
443  return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
444  static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
446 }
447 
448 static void reprogram_counter(struct kvm_pmc *pmc)
449 {
450  struct kvm_pmu *pmu = pmc_to_pmu(pmc);
451  u64 eventsel = pmc->eventsel;
452  u64 new_config = eventsel;
453  bool emulate_overflow;
454  u8 fixed_ctr_ctrl;
455 
456  emulate_overflow = pmc_pause_counter(pmc);
457 
458  if (!pmc_event_is_allowed(pmc))
459  goto reprogram_complete;
460 
461  if (emulate_overflow)
462  __kvm_perf_overflow(pmc, false);
463 
464  if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
465  printk_once("kvm pmu: pin control bit is ignored\n");
466 
467  if (pmc_is_fixed(pmc)) {
468  fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
469  pmc->idx - INTEL_PMC_IDX_FIXED);
470  if (fixed_ctr_ctrl & 0x1)
471  eventsel |= ARCH_PERFMON_EVENTSEL_OS;
472  if (fixed_ctr_ctrl & 0x2)
473  eventsel |= ARCH_PERFMON_EVENTSEL_USR;
474  if (fixed_ctr_ctrl & 0x8)
475  eventsel |= ARCH_PERFMON_EVENTSEL_INT;
476  new_config = (u64)fixed_ctr_ctrl;
477  }
478 
479  if (pmc->current_config == new_config && pmc_resume_counter(pmc))
480  goto reprogram_complete;
481 
483 
484  pmc->current_config = new_config;
485 
486  /*
487  * If reprogramming fails, e.g. due to contention, leave the counter's
488  * regprogram bit set, i.e. opportunistically try again on the next PMU
489  * refresh. Don't make a new request as doing so can stall the guest
490  * if reprogramming repeatedly fails.
491  */
492  if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
493  (eventsel & pmu->raw_event_mask),
494  !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
495  !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
496  eventsel & ARCH_PERFMON_EVENTSEL_INT))
497  return;
498 
499 reprogram_complete:
500  clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
501 }
502 
503 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
504 {
505  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
506  int bit;
507 
508  for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
509  struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
510 
511  if (unlikely(!pmc)) {
512  clear_bit(bit, pmu->reprogram_pmi);
513  continue;
514  }
515 
516  reprogram_counter(pmc);
517  }
518 
519  /*
520  * Unused perf_events are only released if the corresponding MSRs
521  * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
522  * triggers KVM_REQ_PMU if cleanup is needed.
523  */
524  if (unlikely(pmu->need_cleanup))
525  kvm_pmu_cleanup(vcpu);
526 }
527 
528 /* check if idx is a valid index to access PMU */
529 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
530 {
531  return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
532 }
533 
534 bool is_vmware_backdoor_pmc(u32 pmc_idx)
535 {
536  switch (pmc_idx) {
540  return true;
541  }
542  return false;
543 }
544 
545 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
546 {
547  u64 ctr_val;
548 
549  switch (idx) {
551  ctr_val = rdtsc();
552  break;
554  ctr_val = ktime_get_boottime_ns();
555  break;
557  ctr_val = ktime_get_boottime_ns() +
558  vcpu->kvm->arch.kvmclock_offset;
559  break;
560  default:
561  return 1;
562  }
563 
564  *data = ctr_val;
565  return 0;
566 }
567 
568 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
569 {
570  bool fast_mode = idx & (1u << 31);
571  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
572  struct kvm_pmc *pmc;
573  u64 mask = fast_mode ? ~0u : ~0ull;
574 
575  if (!pmu->version)
576  return 1;
577 
578  if (is_vmware_backdoor_pmc(idx))
579  return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
580 
581  pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
582  if (!pmc)
583  return 1;
584 
585  if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
586  (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
587  kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
588  return 1;
589 
590  *data = pmc_read_counter(pmc) & mask;
591  return 0;
592 }
593 
594 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
595 {
596  if (lapic_in_kernel(vcpu)) {
597  static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
598  kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
599  }
600 }
601 
602 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
603 {
604  switch (msr) {
605  case MSR_CORE_PERF_GLOBAL_STATUS:
606  case MSR_CORE_PERF_GLOBAL_CTRL:
607  case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
609  default:
610  break;
611  }
612  return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
613  static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
614 }
615 
616 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
617 {
618  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619  struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
620 
621  if (pmc)
622  __set_bit(pmc->idx, pmu->pmc_in_use);
623 }
624 
625 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
626 {
627  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
628  u32 msr = msr_info->index;
629 
630  switch (msr) {
631  case MSR_CORE_PERF_GLOBAL_STATUS:
632  case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
633  msr_info->data = pmu->global_status;
634  break;
635  case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
636  case MSR_CORE_PERF_GLOBAL_CTRL:
637  msr_info->data = pmu->global_ctrl;
638  break;
639  case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
640  case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641  msr_info->data = 0;
642  break;
643  default:
644  return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
645  }
646 
647  return 0;
648 }
649 
650 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
651 {
652  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
653  u32 msr = msr_info->index;
654  u64 data = msr_info->data;
655  u64 diff;
656 
657  /*
658  * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
659  * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
660  */
661  switch (msr) {
662  case MSR_CORE_PERF_GLOBAL_STATUS:
663  if (!msr_info->host_initiated)
664  return 1; /* RO MSR */
665  fallthrough;
666  case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
667  /* Per PPR, Read-only MSR. Writes are ignored. */
668  if (!msr_info->host_initiated)
669  break;
670 
671  if (data & pmu->global_status_mask)
672  return 1;
673 
674  pmu->global_status = data;
675  break;
676  case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
677  data &= ~pmu->global_ctrl_mask;
678  fallthrough;
679  case MSR_CORE_PERF_GLOBAL_CTRL:
680  if (!kvm_valid_perf_global_ctrl(pmu, data))
681  return 1;
682 
683  if (pmu->global_ctrl != data) {
684  diff = pmu->global_ctrl ^ data;
685  pmu->global_ctrl = data;
686  reprogram_counters(pmu, diff);
687  }
688  break;
689  case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
690  /*
691  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
692  * GLOBAL_STATUS, and so the set of reserved bits is the same.
693  */
694  if (data & pmu->global_status_mask)
695  return 1;
696  fallthrough;
697  case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
698  if (!msr_info->host_initiated)
699  pmu->global_status &= ~data;
700  break;
701  default:
702  kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
703  return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
704  }
705 
706  return 0;
707 }
708 
709 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
710 {
711  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
712  struct kvm_pmc *pmc;
713  int i;
714 
715  pmu->need_cleanup = false;
716 
717  bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
718 
719  for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
720  pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
721  if (!pmc)
722  continue;
723 
724  pmc_stop_counter(pmc);
725  pmc->counter = 0;
726  pmc->emulated_counter = 0;
727 
728  if (pmc_is_gp(pmc))
729  pmc->eventsel = 0;
730  }
731 
732  pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
733 
734  static_call_cond(kvm_x86_pmu_reset)(vcpu);
735 }
736 
737 
738 /*
739  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
740  * and/or PERF_CAPABILITIES.
741  */
742 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
743 {
744  if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
745  return;
746 
747  /*
748  * Stop/release all existing counters/events before realizing the new
749  * vPMU model.
750  */
751  kvm_pmu_reset(vcpu);
752 
753  bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
754  static_call(kvm_x86_pmu_refresh)(vcpu);
755 }
756 
757 void kvm_pmu_init(struct kvm_vcpu *vcpu)
758 {
759  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
760 
761  memset(pmu, 0, sizeof(*pmu));
762  static_call(kvm_x86_pmu_init)(vcpu);
763  kvm_pmu_refresh(vcpu);
764 }
765 
766 /* Release perf_events for vPMCs that have been unused for a full time slice. */
767 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
768 {
769  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
770  struct kvm_pmc *pmc = NULL;
771  DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
772  int i;
773 
774  pmu->need_cleanup = false;
775 
776  bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
777  pmu->pmc_in_use, X86_PMC_IDX_MAX);
778 
779  for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
780  pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
781 
782  if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
783  pmc_stop_counter(pmc);
784  }
785 
786  static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
787 
788  bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
789 }
790 
791 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
792 {
793  kvm_pmu_reset(vcpu);
794 }
795 
796 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
797 {
798  pmc->emulated_counter++;
800 }
801 
802 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
803  unsigned int perf_hw_id)
804 {
805  return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
806  AMD64_RAW_EVENT_MASK_NB);
807 }
808 
809 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
810 {
811  bool select_os, select_user;
812  u64 config;
813 
814  if (pmc_is_gp(pmc)) {
815  config = pmc->eventsel;
816  select_os = config & ARCH_PERFMON_EVENTSEL_OS;
817  select_user = config & ARCH_PERFMON_EVENTSEL_USR;
818  } else {
819  config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
820  pmc->idx - INTEL_PMC_IDX_FIXED);
821  select_os = config & 0x1;
822  select_user = config & 0x2;
823  }
824 
825  return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
826 }
827 
828 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
829 {
830  struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
831  struct kvm_pmc *pmc;
832  int i;
833 
834  for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
835  pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
836 
837  if (!pmc || !pmc_event_is_allowed(pmc))
838  continue;
839 
840  /* Ignore checks for edge detect, pin control, invert and CMASK bits */
841  if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
843  }
844 }
846 
847 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
848 {
849  u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
850  KVM_PMU_MASKED_ENTRY_UMASK_MASK |
851  KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
852  KVM_PMU_MASKED_ENTRY_EXCLUDE;
853  int i;
854 
855  for (i = 0; i < filter->nevents; i++) {
856  if (filter->events[i] & ~mask)
857  return false;
858  }
859 
860  return true;
861 }
862 
863 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
864 {
865  int i, j;
866 
867  for (i = 0, j = 0; i < filter->nevents; i++) {
868  /*
869  * Skip events that are impossible to match against a guest
870  * event. When filtering, only the event select + unit mask
871  * of the guest event is used. To maintain backwards
872  * compatibility, impossible filters can't be rejected :-(
873  */
874  if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
875  ARCH_PERFMON_EVENTSEL_UMASK))
876  continue;
877  /*
878  * Convert userspace events to a common in-kernel event so
879  * only one code path is needed to support both events. For
880  * the in-kernel events use masked events because they are
881  * flexible enough to handle both cases. To convert to masked
882  * events all that's needed is to add an "all ones" umask_mask,
883  * (unmasked filter events don't support EXCLUDE).
884  */
885  filter->events[j++] = filter->events[i] |
886  (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
887  }
888 
889  filter->nevents = j;
890 }
891 
892 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
893 {
894  int i;
895 
896  if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
897  convert_to_masked_filter(filter);
898  else if (!is_masked_filter_valid(filter))
899  return -EINVAL;
900 
901  /*
902  * Sort entries by event select and includes vs. excludes so that all
903  * entries for a given event select can be processed efficiently during
904  * filtering. The EXCLUDE flag uses a more significant bit than the
905  * event select, and so the sorted list is also effectively split into
906  * includes and excludes sub-lists.
907  */
908  sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
909  filter_sort_cmp, NULL);
910 
911  i = filter->nevents;
912  /* Find the first EXCLUDE event (only supported for masked events). */
913  if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
914  for (i = 0; i < filter->nevents; i++) {
915  if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
916  break;
917  }
918  }
919 
920  filter->nr_includes = i;
921  filter->nr_excludes = filter->nevents - filter->nr_includes;
922  filter->includes = filter->events;
923  filter->excludes = filter->events + filter->nr_includes;
924 
925  return 0;
926 }
927 
928 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
929 {
930  struct kvm_pmu_event_filter __user *user_filter = argp;
931  struct kvm_x86_pmu_event_filter *filter;
932  struct kvm_pmu_event_filter tmp;
933  struct kvm_vcpu *vcpu;
934  unsigned long i;
935  size_t size;
936  int r;
937 
938  if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
939  return -EFAULT;
940 
941  if (tmp.action != KVM_PMU_EVENT_ALLOW &&
942  tmp.action != KVM_PMU_EVENT_DENY)
943  return -EINVAL;
944 
945  if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
946  return -EINVAL;
947 
948  if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
949  return -E2BIG;
950 
951  size = struct_size(filter, events, tmp.nevents);
952  filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
953  if (!filter)
954  return -ENOMEM;
955 
956  filter->action = tmp.action;
957  filter->nevents = tmp.nevents;
958  filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
959  filter->flags = tmp.flags;
960 
961  r = -EFAULT;
962  if (copy_from_user(filter->events, user_filter->events,
963  sizeof(filter->events[0]) * filter->nevents))
964  goto cleanup;
965 
966  r = prepare_filter_lists(filter);
967  if (r)
968  goto cleanup;
969 
970  mutex_lock(&kvm->lock);
971  filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
972  mutex_is_locked(&kvm->lock));
973  mutex_unlock(&kvm->lock);
974  synchronize_srcu_expedited(&kvm->srcu);
975 
976  BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
977  sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
978 
979  kvm_for_each_vcpu(i, vcpu, kvm)
980  atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
981 
982  kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
983 
984  r = 0;
985 cleanup:
986  kfree(filter);
987  return r;
988 }
static bool guest_cpuid_is_intel(struct kvm_vcpu *vcpu)
Definition: cpuid.h:115
static __always_inline bool kvm_is_cr0_bit_set(struct kvm_vcpu *vcpu, unsigned long cr0_bit)
static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu, unsigned long cr4_bit)
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
Definition: kvm_main.c:340
int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
Definition: lapic.c:2762
static bool lapic_in_kernel(struct kvm_vcpu *vcpu)
Definition: lapic.h:186
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
Definition: pmu.c:594
void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
Definition: pmu.c:828
static const struct x86_cpu_id vmx_pebs_pdir_cpu[]
Definition: pmu.c:33
static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
Definition: pmu.c:164
static void pmc_release_perf_event(struct kvm_pmc *pmc)
Definition: pmu.c:275
static void pmc_update_sample_period(struct kvm_pmc *pmc)
Definition: pmu.c:293
static void reprogram_counter(struct kvm_pmc *pmc)
Definition: pmu.c:448
void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
Definition: pmu.c:303
void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
Definition: pmu.c:767
static bool is_filter_entry_match(u64 filter_event, u64 umask)
Definition: pmu.c:356
static int filter_sort_cmp(const void *pa, const void *pb)
Definition: pmu.c:329
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
Definition: pmu.c:625
static bool pmc_pause_counter(struct kvm_pmc *pmc)
Definition: pmu.c:227
int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
Definition: pmu.c:928
bool is_vmware_backdoor_pmc(u32 pmc_idx)
Definition: pmu.c:534
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
Definition: pmu.c:602
static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
Definition: pmu.c:142
static struct kvm_pmu_ops kvm_pmu_ops __read_mostly
Definition: pmu.c:75
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
Definition: pmu.c:650
static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, bool exclude_user, bool exclude_kernel, bool intr)
Definition: pmu.c:173
EXPORT_SYMBOL_GPL(kvm_pmu_cap)
static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, u64 eventsel)
Definition: pmu.c:401
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
Definition: pmu.c:503
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
Definition: pmu.c:742
static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
Definition: pmu.c:796
struct x86_pmu_capability __read_mostly kvm_pmu_cap
Definition: pmu.c:29
static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
Definition: pmu.c:368
static bool cpl_is_matched(struct kvm_pmc *pmc)
Definition: pmu.c:809
static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
Definition: pmu.c:545
static const struct x86_cpu_id vmx_pebs_pdist_cpu[]
Definition: pmu.c:42
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
Definition: pmu.c:568
static int find_filter_index(u64 *events, u64 nevents, u64 key)
Definition: pmu.c:345
static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, int idx)
Definition: pmu.c:411
static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
Definition: pmu.c:616
#define KVM_PMU_EVENT_FILTER_MAX_EVENTS
Definition: pmu.c:27
static int filter_cmp(const void *pa, const void *pb, u64 mask)
Definition: pmu.c:320
void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
Definition: pmu.c:83
static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
Definition: pmu.c:892
static void pmc_stop_counter(struct kvm_pmc *pmc)
Definition: pmu.c:285
static bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, unsigned int perf_hw_id)
Definition: pmu.c:802
static int filter_event_cmp(const void *pa, const void *pb)
Definition: pmu.c:340
static void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
Definition: pmu.c:96
static bool pmc_resume_counter(struct kvm_pmc *pmc)
Definition: pmu.c:253
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
Definition: pmu.c:791
static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
Definition: pmu.c:441
static void kvm_perf_overflow(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs)
Definition: pmu.c:123
static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
Definition: pmu.c:847
bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
Definition: pmu.c:529
void kvm_pmu_init(struct kvm_vcpu *vcpu)
Definition: pmu.c:757
static bool check_pmu_event_filter(struct kvm_pmc *pmc)
Definition: pmu.c:426
static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
Definition: pmu.c:863
static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
Definition: pmu.c:709
static bool kvm_valid_perf_global_ctrl(struct kvm_pmu *pmu, u64 data)
Definition: pmu.h:90
static bool pmc_is_fixed(struct kvm_pmc *pmc)
Definition: pmu.h:85
static bool pmc_is_globally_enabled(struct kvm_pmc *pmc)
Definition: pmu.h:206
static bool pmc_speculative_in_use(struct kvm_pmc *pmc)
Definition: pmu.h:128
#define VMWARE_BACKDOOR_PMC_APPARENT_TIME
Definition: pmu.h:19
static bool pmc_is_gp(struct kvm_pmc *pmc)
Definition: pmu.h:80
static u64 pmc_read_counter(struct kvm_pmc *pmc)
Definition: pmu.h:65
static u64 pmc_bitmask(struct kvm_pmc *pmc)
Definition: pmu.h:58
#define pmc_to_pmu(pmc)
Definition: pmu.h:9
static void kvm_pmu_request_counter_reprogram(struct kvm_pmc *pmc)
Definition: pmu.h:183
#define vcpu_to_pmu(vcpu)
Definition: pmu.h:7
#define VMWARE_BACKDOOR_PMC_HOST_TSC
Definition: pmu.h:17
static bool kvm_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
Definition: pmu.h:44
#define VMWARE_BACKDOOR_PMC_REAL_TIME
Definition: pmu.h:18
static void reprogram_counters(struct kvm_pmu *pmu, u64 diff)
Definition: pmu.h:189
#define fixed_ctrl_field(ctrl_reg, idx)
Definition: pmu.h:15
u8 eventsel
Definition: pmu_intel.c:51
const u64 EVENTSEL_EVENT
Definition: pmu.h:37
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS)
static bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
Definition: x86.h:95