KVM
cpuid.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38 
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41  int feature_bit = 0;
42  u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43 
44  xstate_bv &= XFEATURE_MASK_EXTEND;
45  while (xstate_bv) {
46  if (xstate_bv & 0x1) {
47  u32 eax, ebx, ecx, edx, offset;
48  cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49  /* ECX[1]: 64B alignment in compacted form */
50  if (compacted)
51  offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52  else
53  offset = ebx;
54  ret = max(ret, offset + eax);
55  }
56 
57  xstate_bv >>= 1;
58  feature_bit++;
59  }
60 
61  return ret;
62 }
63 
64 #define F feature_bit
65 
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name) \
68 ({ \
69  BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
70  (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \
71 })
72 
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant. Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81 
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83  struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85  struct kvm_cpuid_entry2 *e;
86  int i;
87 
88  /*
89  * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90  * with IRQs disabled is disallowed. The CPUID model can legitimately
91  * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92  * typically disabled in KVM only when KVM is in a performance critical
93  * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
94  * if this rule is violated, this assertion is purely to flag potential
95  * performance issues. If this fires, consider moving the lookup out
96  * of the hotpath, e.g. by caching information during CPUID updates.
97  */
98  lockdep_assert_irqs_enabled();
99 
100  for (i = 0; i < nent; i++) {
101  e = &entries[i];
102 
103  if (e->function != function)
104  continue;
105 
106  /*
107  * If the index isn't significant, use the first entry with a
108  * matching function. It's userspace's responsibility to not
109  * provide "duplicate" entries in all cases.
110  */
111  if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112  return e;
113 
114 
115  /*
116  * Similarly, use the first matching entry if KVM is doing a
117  * lookup (as opposed to emulating CPUID) for a function that's
118  * architecturally defined as not having a significant index.
119  */
120  if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121  /*
122  * Direct lookups from KVM should not diverge from what
123  * KVM defines internally (the architectural behavior).
124  */
125  WARN_ON_ONCE(cpuid_function_is_indexed(function));
126  return e;
127  }
128  }
129 
130  return NULL;
131 }
132 
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134  struct kvm_cpuid_entry2 *entries,
135  int nent)
136 {
137  struct kvm_cpuid_entry2 *best;
138  u64 xfeatures;
139 
140  /*
141  * The existing code assumes virtual address is 48-bit or 57-bit in the
142  * canonical address checks; exit if it is ever changed.
143  */
144  best = cpuid_entry2_find(entries, nent, 0x80000008,
146  if (best) {
147  int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149  if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150  return -EINVAL;
151  }
152 
153  /*
154  * Exposing dynamic xfeatures to the guest requires additional
155  * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156  */
157  best = cpuid_entry2_find(entries, nent, 0xd, 0);
158  if (!best)
159  return 0;
160 
161  xfeatures = best->eax | ((u64)best->edx << 32);
162  xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163  if (!xfeatures)
164  return 0;
165 
166  return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171  int nent)
172 {
173  struct kvm_cpuid_entry2 *orig;
174  int i;
175 
176  if (nent != vcpu->arch.cpuid_nent)
177  return -EINVAL;
178 
179  for (i = 0; i < nent; i++) {
180  orig = &vcpu->arch.cpuid_entries[i];
181  if (e2[i].function != orig->function ||
182  e2[i].index != orig->index ||
183  e2[i].flags != orig->flags ||
184  e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185  e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186  return -EINVAL;
187  }
188 
189  return 0;
190 }
191 
192 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193  const char *sig)
194 {
195  struct kvm_hypervisor_cpuid cpuid = {};
196  struct kvm_cpuid_entry2 *entry;
197  u32 base;
198 
199  for_each_possible_hypervisor_cpuid_base(base) {
200  entry = kvm_find_cpuid_entry(vcpu, base);
201 
202  if (entry) {
203  u32 signature[3];
204 
205  signature[0] = entry->ebx;
206  signature[1] = entry->ecx;
207  signature[2] = entry->edx;
208 
209  if (!memcmp(signature, sig, sizeof(signature))) {
210  cpuid.base = base;
211  cpuid.limit = entry->eax;
212  break;
213  }
214  }
215  }
216 
217  return cpuid;
218 }
219 
220 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221  struct kvm_cpuid_entry2 *entries, int nent)
222 {
223  u32 base = vcpu->arch.kvm_cpuid.base;
224 
225  if (!base)
226  return NULL;
227 
228  return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
230 }
231 
232 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233 {
234  return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235  vcpu->arch.cpuid_nent);
236 }
237 
238 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239 {
240  struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241 
242  /*
243  * save the feature bitmap to avoid cpuid lookup for every PV
244  * operation
245  */
246  if (best)
247  vcpu->arch.pv_cpuid.features = best->eax;
248 }
249 
250 /*
251  * Calculate guest's supported XCR0 taking into account guest CPUID data and
252  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253  */
254 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255 {
256  struct kvm_cpuid_entry2 *best;
257 
258  best = cpuid_entry2_find(entries, nent, 0xd, 0);
259  if (!best)
260  return 0;
261 
262  return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263 }
264 
265 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266  int nent)
267 {
268  struct kvm_cpuid_entry2 *best;
269 
270  best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271  if (best) {
272  /* Update OSXSAVE bit */
273  if (boot_cpu_has(X86_FEATURE_XSAVE))
274  cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275  kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276 
277  cpuid_entry_change(best, X86_FEATURE_APIC,
278  vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279  }
280 
281  best = cpuid_entry2_find(entries, nent, 7, 0);
282  if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283  cpuid_entry_change(best, X86_FEATURE_OSPKE,
284  kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285 
286  best = cpuid_entry2_find(entries, nent, 0xD, 0);
287  if (best)
288  best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289 
290  best = cpuid_entry2_find(entries, nent, 0xD, 1);
291  if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292  cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293  best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294 
295  best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296  if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297  (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298  best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299 
300  if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301  best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302  if (best)
303  cpuid_entry_change(best, X86_FEATURE_MWAIT,
304  vcpu->arch.ia32_misc_enable_msr &
305  MSR_IA32_MISC_ENABLE_MWAIT);
306  }
307 }
308 
309 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310 {
311  __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312 }
314 
315 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316 {
317 #ifdef CONFIG_KVM_HYPERV
318  struct kvm_cpuid_entry2 *entry;
319 
320  entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
322  return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
323 #else
324  return false;
325 #endif
326 }
327 
328 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
329 {
330  struct kvm_lapic *apic = vcpu->arch.apic;
331  struct kvm_cpuid_entry2 *best;
332  bool allow_gbpages;
333 
334  BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
335  bitmap_zero(vcpu->arch.governed_features.enabled,
336  KVM_MAX_NR_GOVERNED_FEATURES);
337 
338  /*
339  * If TDP is enabled, let the guest use GBPAGES if they're supported in
340  * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
341  * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
342  * walk for performance and complexity reasons. Not to mention KVM
343  * _can't_ solve the problem because GVA->GPA walks aren't visible to
344  * KVM once a TDP translation is installed. Mimic hardware behavior so
345  * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
346  * If TDP is disabled, honor *only* guest CPUID as KVM has full control
347  * and can install smaller shadow pages if the host lacks 1GiB support.
348  */
349  allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
350  guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
351  if (allow_gbpages)
352  kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
353 
354  best = kvm_find_cpuid_entry(vcpu, 1);
355  if (best && apic) {
356  if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
357  apic->lapic_timer.timer_mode_mask = 3 << 17;
358  else
359  apic->lapic_timer.timer_mode_mask = 1 << 17;
360 
361  kvm_apic_set_version(vcpu);
362  }
363 
364  vcpu->arch.guest_supported_xcr0 =
365  cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
366 
367  kvm_update_pv_runtime(vcpu);
368 
369  vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
370  vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
371  vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
372 
373  kvm_pmu_refresh(vcpu);
374  vcpu->arch.cr4_guest_rsvd_bits =
376 
377  kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
378  vcpu->arch.cpuid_nent));
379 
380  /* Invoke the vendor callback only after the above state is updated. */
381  static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
382 
383  /*
384  * Except for the MMU, which needs to do its thing any vendor specific
385  * adjustments to the reserved GPA bits.
386  */
388 }
389 
390 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
391 {
392  struct kvm_cpuid_entry2 *best;
393 
394  best = kvm_find_cpuid_entry(vcpu, 0x80000000);
395  if (!best || best->eax < 0x80000008)
396  goto not_found;
397  best = kvm_find_cpuid_entry(vcpu, 0x80000008);
398  if (best)
399  return best->eax & 0xff;
400 not_found:
401  return 36;
402 }
403 
404 /*
405  * This "raw" version returns the reserved GPA bits without any adjustments for
406  * encryption technologies that usurp bits. The raw mask should be used if and
407  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
408  */
409 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
410 {
411  return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
412 }
413 
414 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
415  int nent)
416 {
417  int r;
418 
419  __kvm_update_cpuid_runtime(vcpu, e2, nent);
420 
421  /*
422  * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
423  * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
424  * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
425  * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
426  * the core vCPU model on the fly. It would've been better to forbid any
427  * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
428  * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
429  * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
430  * whether the supplied CPUID data is equal to what's already set.
431  */
432  if (kvm_vcpu_has_run(vcpu)) {
433  r = kvm_cpuid_check_equal(vcpu, e2, nent);
434  if (r)
435  return r;
436 
437  kvfree(e2);
438  return 0;
439  }
440 
441 #ifdef CONFIG_KVM_HYPERV
442  if (kvm_cpuid_has_hyperv(e2, nent)) {
443  r = kvm_hv_vcpu_init(vcpu);
444  if (r)
445  return r;
446  }
447 #endif
448 
449  r = kvm_check_cpuid(vcpu, e2, nent);
450  if (r)
451  return r;
452 
453  kvfree(vcpu->arch.cpuid_entries);
454  vcpu->arch.cpuid_entries = e2;
455  vcpu->arch.cpuid_nent = nent;
456 
457  vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
458 #ifdef CONFIG_KVM_XEN
459  vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
460 #endif
462 
463  return 0;
464 }
465 
466 /* when an old userspace process fills a new kernel module */
467 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
468  struct kvm_cpuid *cpuid,
469  struct kvm_cpuid_entry __user *entries)
470 {
471  int r, i;
472  struct kvm_cpuid_entry *e = NULL;
473  struct kvm_cpuid_entry2 *e2 = NULL;
474 
475  if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
476  return -E2BIG;
477 
478  if (cpuid->nent) {
479  e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
480  if (IS_ERR(e))
481  return PTR_ERR(e);
482 
483  e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
484  if (!e2) {
485  r = -ENOMEM;
486  goto out_free_cpuid;
487  }
488  }
489  for (i = 0; i < cpuid->nent; i++) {
490  e2[i].function = e[i].function;
491  e2[i].eax = e[i].eax;
492  e2[i].ebx = e[i].ebx;
493  e2[i].ecx = e[i].ecx;
494  e2[i].edx = e[i].edx;
495  e2[i].index = 0;
496  e2[i].flags = 0;
497  e2[i].padding[0] = 0;
498  e2[i].padding[1] = 0;
499  e2[i].padding[2] = 0;
500  }
501 
502  r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
503  if (r)
504  kvfree(e2);
505 
506 out_free_cpuid:
507  kvfree(e);
508 
509  return r;
510 }
511 
512 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
513  struct kvm_cpuid2 *cpuid,
514  struct kvm_cpuid_entry2 __user *entries)
515 {
516  struct kvm_cpuid_entry2 *e2 = NULL;
517  int r;
518 
519  if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
520  return -E2BIG;
521 
522  if (cpuid->nent) {
523  e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
524  if (IS_ERR(e2))
525  return PTR_ERR(e2);
526  }
527 
528  r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
529  if (r)
530  kvfree(e2);
531 
532  return r;
533 }
534 
535 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
536  struct kvm_cpuid2 *cpuid,
537  struct kvm_cpuid_entry2 __user *entries)
538 {
539  if (cpuid->nent < vcpu->arch.cpuid_nent)
540  return -E2BIG;
541 
542  if (copy_to_user(entries, vcpu->arch.cpuid_entries,
543  vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
544  return -EFAULT;
545 
546  cpuid->nent = vcpu->arch.cpuid_nent;
547  return 0;
548 }
549 
550 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
551 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
552 {
553  const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
554  struct kvm_cpuid_entry2 entry;
555 
556  reverse_cpuid_check(leaf);
557 
558  cpuid_count(cpuid.function, cpuid.index,
559  &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
560 
561  kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
562 }
563 
564 static __always_inline
566 {
567  /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
568  BUILD_BUG_ON(leaf < NCAPINTS);
569 
570  kvm_cpu_caps[leaf] = mask;
571 
572  __kvm_cpu_cap_mask(leaf);
573 }
574 
575 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
576 {
577  /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
578  BUILD_BUG_ON(leaf >= NCAPINTS);
579 
580  kvm_cpu_caps[leaf] &= mask;
581 
582  __kvm_cpu_cap_mask(leaf);
583 }
584 
586 {
587 #ifdef CONFIG_X86_64
588  unsigned int f_gbpages = F(GBPAGES);
589  unsigned int f_lm = F(LM);
590  unsigned int f_xfd = F(XFD);
591 #else
592  unsigned int f_gbpages = 0;
593  unsigned int f_lm = 0;
594  unsigned int f_xfd = 0;
595 #endif
596  memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
597 
598  BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
599  sizeof(boot_cpu_data.x86_capability));
600 
601  memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
602  sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
603 
604  kvm_cpu_cap_mask(CPUID_1_ECX,
605  /*
606  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
607  * advertised to guests via CPUID!
608  */
609  F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
610  0 /* DS-CPL, VMX, SMX, EST */ |
611  0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
612  F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
613  F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
614  F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
615  0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
616  F(F16C) | F(RDRAND)
617  );
618  /* KVM emulates x2apic in software irrespective of host support. */
619  kvm_cpu_cap_set(X86_FEATURE_X2APIC);
620 
621  kvm_cpu_cap_mask(CPUID_1_EDX,
622  F(FPU) | F(VME) | F(DE) | F(PSE) |
623  F(TSC) | F(MSR) | F(PAE) | F(MCE) |
624  F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
625  F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
626  F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
627  0 /* Reserved, DS, ACPI */ | F(MMX) |
628  F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
629  0 /* HTT, TM, Reserved, PBE */
630  );
631 
632  kvm_cpu_cap_mask(CPUID_7_0_EBX,
633  F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
634  F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
635  F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
636  F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
637  F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
638  F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
639  F(AVX512VL));
640 
641  kvm_cpu_cap_mask(CPUID_7_ECX,
642  F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
643  F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
644  F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
645  F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
646  F(SGX_LC) | F(BUS_LOCK_DETECT)
647  );
648  /* Set LA57 based on hardware capability. */
649  if (cpuid_ecx(7) & F(LA57))
650  kvm_cpu_cap_set(X86_FEATURE_LA57);
651 
652  /*
653  * PKU not yet implemented for shadow paging and requires OSPKE
654  * to be set on the host. Clear it if that is not the case
655  */
656  if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
657  kvm_cpu_cap_clear(X86_FEATURE_PKU);
658 
659  kvm_cpu_cap_mask(CPUID_7_EDX,
660  F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
661  F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
662  F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
663  F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
664  F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
665  );
666 
667  /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
668  kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
669  kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
670 
671  if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
672  kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
673  if (boot_cpu_has(X86_FEATURE_STIBP))
674  kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
675  if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
676  kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
677 
678  kvm_cpu_cap_mask(CPUID_7_1_EAX,
679  F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
680  F(FZRM) | F(FSRS) | F(FSRC) |
681  F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
682  );
683 
685  F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
686  F(AMX_COMPLEX)
687  );
688 
690  F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
691  F(BHI_CTRL) | F(MCDT_NO)
692  );
693 
694  kvm_cpu_cap_mask(CPUID_D_1_EAX,
695  F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
696  );
697 
699  SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
700  );
701 
702  kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
703  F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
704  F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
705  F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
706  0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
707  F(TOPOEXT) | 0 /* PERFCTR_CORE */
708  );
709 
710  kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
711  F(FPU) | F(VME) | F(DE) | F(PSE) |
712  F(TSC) | F(MSR) | F(PAE) | F(MCE) |
713  F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
714  F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
715  F(PAT) | F(PSE36) | 0 /* Reserved */ |
716  F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
717  F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
718  0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
719  );
720 
721  if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
722  kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
723 
725  SF(CONSTANT_TSC)
726  );
727 
728  kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
729  F(CLZERO) | F(XSAVEERPTR) |
730  F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
731  F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
732  F(AMD_PSFD)
733  );
734 
735  /*
736  * AMD has separate bits for each SPEC_CTRL bit.
737  * arch/x86/kernel/cpu/bugs.c is kind enough to
738  * record that in cpufeatures so use them.
739  */
740  if (boot_cpu_has(X86_FEATURE_IBPB))
741  kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
742  if (boot_cpu_has(X86_FEATURE_IBRS))
743  kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
744  if (boot_cpu_has(X86_FEATURE_STIBP))
745  kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
746  if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
747  kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
748  if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
749  kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
750  /*
751  * The preference is to use SPEC CTRL MSR instead of the
752  * VIRT_SPEC MSR.
753  */
754  if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
755  !boot_cpu_has(X86_FEATURE_AMD_SSBD))
756  kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
757 
758  /*
759  * Hide all SVM features by default, SVM will set the cap bits for
760  * features it emulates and/or exposes for L1.
761  */
762  kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
763 
764  kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
765  0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
766  F(SME_COHERENT));
767 
768  kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
769  F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
770  F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
771  F(WRMSR_XX_BASE_NS)
772  );
773 
774  kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
775  kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
776  kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
777 
779  F(PERFMON_V2)
780  );
781 
782  /*
783  * Synthesize "LFENCE is serializing" into the AMD-defined entry in
784  * KVM's supported CPUID if the feature is reported as supported by the
785  * kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long
786  * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
787  * CPUs that support SSE2. On CPUs that don't support AMD's leaf,
788  * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
789  * the mask with the raw host CPUID, and reporting support in AMD's
790  * leaf can make it easier for userspace to detect the feature.
791  */
792  if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
793  kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
794  if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
795  kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
796  kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
797 
798  kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
799  F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
800  F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
801  F(PMM) | F(PMM_EN)
802  );
803 
804  /*
805  * Hide RDTSCP and RDPID if either feature is reported as supported but
806  * probing MSR_TSC_AUX failed. This is purely a sanity check and
807  * should never happen, but the guest will likely crash if RDTSCP or
808  * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
809  * the past. For example, the sanity check may fire if this instance of
810  * KVM is running as L1 on top of an older, broken KVM.
811  */
812  if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
813  kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
814  !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
815  kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
816  kvm_cpu_cap_clear(X86_FEATURE_RDPID);
817  }
818 }
820 
822  struct kvm_cpuid_entry2 *entries;
823  int maxnent;
824  int nent;
825 };
826 
827 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
828 {
829  if (array->nent >= array->maxnent)
830  return NULL;
831 
832  return &array->entries[array->nent++];
833 }
834 
835 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
836  u32 function, u32 index)
837 {
838  struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
839 
840  if (!entry)
841  return NULL;
842 
843  memset(entry, 0, sizeof(*entry));
844  entry->function = function;
845  entry->index = index;
846  switch (function & 0xC0000000) {
847  case 0x40000000:
848  /* Hypervisor leaves are always synthesized by __do_cpuid_func. */
849  return entry;
850 
851  case 0x80000000:
852  /*
853  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
854  * would result in out-of-bounds calls to do_host_cpuid.
855  */
856  {
857  static int max_cpuid_80000000;
858  if (!READ_ONCE(max_cpuid_80000000))
859  WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
860  if (function > READ_ONCE(max_cpuid_80000000))
861  return entry;
862  }
863  break;
864 
865  default:
866  break;
867  }
868 
869  cpuid_count(entry->function, entry->index,
870  &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
871 
872  if (cpuid_function_is_indexed(function))
873  entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
874 
875  return entry;
876 }
877 
878 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
879 {
880  struct kvm_cpuid_entry2 *entry;
881 
882  if (array->nent >= array->maxnent)
883  return -E2BIG;
884 
885  entry = &array->entries[array->nent];
886  entry->function = func;
887  entry->index = 0;
888  entry->flags = 0;
889 
890  switch (func) {
891  case 0:
892  entry->eax = 7;
893  ++array->nent;
894  break;
895  case 1:
896  entry->ecx = F(MOVBE);
897  ++array->nent;
898  break;
899  case 7:
900  entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
901  entry->eax = 0;
902  if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
903  entry->ecx = F(RDPID);
904  ++array->nent;
905  break;
906  default:
907  break;
908  }
909 
910  return 0;
911 }
912 
913 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
914 {
915  struct kvm_cpuid_entry2 *entry;
916  int r, i, max_idx;
917 
918  /* all calls to cpuid_count() should be made on the same cpu */
919  get_cpu();
920 
921  r = -E2BIG;
922 
923  entry = do_host_cpuid(array, function, 0);
924  if (!entry)
925  goto out;
926 
927  switch (function) {
928  case 0:
929  /* Limited to the highest leaf implemented in KVM. */
930  entry->eax = min(entry->eax, 0x1fU);
931  break;
932  case 1:
933  cpuid_entry_override(entry, CPUID_1_EDX);
934  cpuid_entry_override(entry, CPUID_1_ECX);
935  break;
936  case 2:
937  /*
938  * On ancient CPUs, function 2 entries are STATEFUL. That is,
939  * CPUID(function=2, index=0) may return different results each
940  * time, with the least-significant byte in EAX enumerating the
941  * number of times software should do CPUID(2, 0).
942  *
943  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
944  * idiotic. Intel's SDM states that EAX & 0xff "will always
945  * return 01H. Software should ignore this value and not
946  * interpret it as an informational descriptor", while AMD's
947  * APM states that CPUID(2) is reserved.
948  *
949  * WARN if a frankenstein CPU that supports virtualization and
950  * a stateful CPUID.0x2 is encountered.
951  */
952  WARN_ON_ONCE((entry->eax & 0xff) > 1);
953  break;
954  /* functions 4 and 0x8000001d have additional index. */
955  case 4:
956  case 0x8000001d:
957  /*
958  * Read entries until the cache type in the previous entry is
959  * zero, i.e. indicates an invalid entry.
960  */
961  for (i = 1; entry->eax & 0x1f; ++i) {
962  entry = do_host_cpuid(array, function, i);
963  if (!entry)
964  goto out;
965  }
966  break;
967  case 6: /* Thermal management */
968  entry->eax = 0x4; /* allow ARAT */
969  entry->ebx = 0;
970  entry->ecx = 0;
971  entry->edx = 0;
972  break;
973  /* function 7 has additional index. */
974  case 7:
975  max_idx = entry->eax = min(entry->eax, 2u);
976  cpuid_entry_override(entry, CPUID_7_0_EBX);
977  cpuid_entry_override(entry, CPUID_7_ECX);
978  cpuid_entry_override(entry, CPUID_7_EDX);
979 
980  /* KVM only supports up to 0x7.2, capped above via min(). */
981  if (max_idx >= 1) {
982  entry = do_host_cpuid(array, function, 1);
983  if (!entry)
984  goto out;
985 
986  cpuid_entry_override(entry, CPUID_7_1_EAX);
988  entry->ebx = 0;
989  entry->ecx = 0;
990  }
991  if (max_idx >= 2) {
992  entry = do_host_cpuid(array, function, 2);
993  if (!entry)
994  goto out;
995 
997  entry->ecx = 0;
998  entry->ebx = 0;
999  entry->eax = 0;
1000  }
1001  break;
1002  case 0xa: { /* Architectural Performance Monitoring */
1003  union cpuid10_eax eax;
1004  union cpuid10_edx edx;
1005 
1006  if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1007  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1008  break;
1009  }
1010 
1011  eax.split.version_id = kvm_pmu_cap.version;
1012  eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1013  eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1014  eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1015  edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1016  edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1017 
1018  if (kvm_pmu_cap.version)
1019  edx.split.anythread_deprecated = 1;
1020  edx.split.reserved1 = 0;
1021  edx.split.reserved2 = 0;
1022 
1023  entry->eax = eax.full;
1024  entry->ebx = kvm_pmu_cap.events_mask;
1025  entry->ecx = 0;
1026  entry->edx = edx.full;
1027  break;
1028  }
1029  case 0x1f:
1030  case 0xb:
1031  /*
1032  * No topology; a valid topology is indicated by the presence
1033  * of subleaf 1.
1034  */
1035  entry->eax = entry->ebx = entry->ecx = 0;
1036  break;
1037  case 0xd: {
1038  u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1039  u64 permitted_xss = kvm_caps.supported_xss;
1040 
1041  entry->eax &= permitted_xcr0;
1042  entry->ebx = xstate_required_size(permitted_xcr0, false);
1043  entry->ecx = entry->ebx;
1044  entry->edx &= permitted_xcr0 >> 32;
1045  if (!permitted_xcr0)
1046  break;
1047 
1048  entry = do_host_cpuid(array, function, 1);
1049  if (!entry)
1050  goto out;
1051 
1052  cpuid_entry_override(entry, CPUID_D_1_EAX);
1053  if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1054  entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1055  true);
1056  else {
1057  WARN_ON_ONCE(permitted_xss != 0);
1058  entry->ebx = 0;
1059  }
1060  entry->ecx &= permitted_xss;
1061  entry->edx &= permitted_xss >> 32;
1062 
1063  for (i = 2; i < 64; ++i) {
1064  bool s_state;
1065  if (permitted_xcr0 & BIT_ULL(i))
1066  s_state = false;
1067  else if (permitted_xss & BIT_ULL(i))
1068  s_state = true;
1069  else
1070  continue;
1071 
1072  entry = do_host_cpuid(array, function, i);
1073  if (!entry)
1074  goto out;
1075 
1076  /*
1077  * The supported check above should have filtered out
1078  * invalid sub-leafs. Only valid sub-leafs should
1079  * reach this point, and they should have a non-zero
1080  * save state size. Furthermore, check whether the
1081  * processor agrees with permitted_xcr0/permitted_xss
1082  * on whether this is an XCR0- or IA32_XSS-managed area.
1083  */
1084  if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1085  --array->nent;
1086  continue;
1087  }
1088 
1089  if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1090  entry->ecx &= ~BIT_ULL(2);
1091  entry->edx = 0;
1092  }
1093  break;
1094  }
1095  case 0x12:
1096  /* Intel SGX */
1097  if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1098  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1099  break;
1100  }
1101 
1102  /*
1103  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1104  * and max enclave sizes. The SGX sub-features and MISCSELECT
1105  * are restricted by kernel and KVM capabilities (like most
1106  * feature flags), while enclave size is unrestricted.
1107  */
1109  entry->ebx &= SGX_MISC_EXINFO;
1110 
1111  entry = do_host_cpuid(array, function, 1);
1112  if (!entry)
1113  goto out;
1114 
1115  /*
1116  * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
1117  * feature flags. Advertise all supported flags, including
1118  * privileged attributes that require explicit opt-in from
1119  * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
1120  * expected to derive it from supported XCR0.
1121  */
1122  entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1123  entry->ebx &= 0;
1124  break;
1125  /* Intel PT */
1126  case 0x14:
1127  if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1128  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1129  break;
1130  }
1131 
1132  for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1133  if (!do_host_cpuid(array, function, i))
1134  goto out;
1135  }
1136  break;
1137  /* Intel AMX TILE */
1138  case 0x1d:
1139  if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1140  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1141  break;
1142  }
1143 
1144  for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1145  if (!do_host_cpuid(array, function, i))
1146  goto out;
1147  }
1148  break;
1149  case 0x1e: /* TMUL information */
1150  if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1151  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152  break;
1153  }
1154  break;
1155  case KVM_CPUID_SIGNATURE: {
1156  const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1157  entry->eax = KVM_CPUID_FEATURES;
1158  entry->ebx = sigptr[0];
1159  entry->ecx = sigptr[1];
1160  entry->edx = sigptr[2];
1161  break;
1162  }
1163  case KVM_CPUID_FEATURES:
1164  entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1165  (1 << KVM_FEATURE_NOP_IO_DELAY) |
1166  (1 << KVM_FEATURE_CLOCKSOURCE2) |
1167  (1 << KVM_FEATURE_ASYNC_PF) |
1168  (1 << KVM_FEATURE_PV_EOI) |
1169  (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1170  (1 << KVM_FEATURE_PV_UNHALT) |
1171  (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1172  (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1173  (1 << KVM_FEATURE_PV_SEND_IPI) |
1174  (1 << KVM_FEATURE_POLL_CONTROL) |
1175  (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1176  (1 << KVM_FEATURE_ASYNC_PF_INT);
1177 
1178  if (sched_info_on())
1179  entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1180 
1181  entry->ebx = 0;
1182  entry->ecx = 0;
1183  entry->edx = 0;
1184  break;
1185  case 0x80000000:
1186  entry->eax = min(entry->eax, 0x80000022);
1187  /*
1188  * Serializing LFENCE is reported in a multitude of ways, and
1189  * NullSegClearsBase is not reported in CPUID on Zen2; help
1190  * userspace by providing the CPUID leaf ourselves.
1191  *
1192  * However, only do it if the host has CPUID leaf 0x8000001d.
1193  * QEMU thinks that it can query the host blindly for that
1194  * CPUID leaf if KVM reports that it supports 0x8000001d or
1195  * above. The processor merrily returns values from the
1196  * highest Intel leaf which QEMU tries to use as the guest's
1197  * 0x8000001d. Even worse, this can result in an infinite
1198  * loop if said highest leaf has no subleaves indexed by ECX.
1199  */
1200  if (entry->eax >= 0x8000001d &&
1201  (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1202  || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1203  entry->eax = max(entry->eax, 0x80000021);
1204  break;
1205  case 0x80000001:
1206  entry->ebx &= ~GENMASK(27, 16);
1207  cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1208  cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1209  break;
1210  case 0x80000005:
1211  /* Pass host L1 cache and TLB info. */
1212  break;
1213  case 0x80000006:
1214  /* Drop reserved bits, pass host L2 cache and TLB info. */
1215  entry->edx &= ~GENMASK(17, 16);
1216  break;
1217  case 0x80000007: /* Advanced power management */
1219 
1220  /* mask against host */
1221  entry->edx &= boot_cpu_data.x86_power;
1222  entry->eax = entry->ebx = entry->ecx = 0;
1223  break;
1224  case 0x80000008: {
1225  unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1226  unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1227  unsigned phys_as = entry->eax & 0xff;
1228 
1229  /*
1230  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1231  * the guest operates in the same PA space as the host, i.e.
1232  * reductions in MAXPHYADDR for memory encryption affect shadow
1233  * paging, too.
1234  *
1235  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1236  * provided, use the raw bare metal MAXPHYADDR as reductions to
1237  * the HPAs do not affect GPAs.
1238  */
1239  if (!tdp_enabled)
1240  g_phys_as = boot_cpu_data.x86_phys_bits;
1241  else if (!g_phys_as)
1242  g_phys_as = phys_as;
1243 
1244  entry->eax = g_phys_as | (virt_as << 8);
1245  entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1246  entry->edx = 0;
1247  cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1248  break;
1249  }
1250  case 0x8000000A:
1251  if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1252  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1253  break;
1254  }
1255  entry->eax = 1; /* SVM revision 1 */
1256  entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1257  ASID emulation to nested SVM */
1258  entry->ecx = 0; /* Reserved */
1259  cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1260  break;
1261  case 0x80000019:
1262  entry->ecx = entry->edx = 0;
1263  break;
1264  case 0x8000001a:
1265  entry->eax &= GENMASK(2, 0);
1266  entry->ebx = entry->ecx = entry->edx = 0;
1267  break;
1268  case 0x8000001e:
1269  /* Do not return host topology information. */
1270  entry->eax = entry->ebx = entry->ecx = 0;
1271  entry->edx = 0; /* reserved */
1272  break;
1273  case 0x8000001F:
1274  if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1275  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1276  } else {
1277  cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1278  /* Clear NumVMPL since KVM does not support VMPL. */
1279  entry->ebx &= ~GENMASK(31, 12);
1280  /*
1281  * Enumerate '0' for "PA bits reduction", the adjusted
1282  * MAXPHYADDR is enumerated directly (see 0x80000008).
1283  */
1284  entry->ebx &= ~GENMASK(11, 6);
1285  }
1286  break;
1287  case 0x80000020:
1288  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1289  break;
1290  case 0x80000021:
1291  entry->ebx = entry->ecx = entry->edx = 0;
1292  cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1293  break;
1294  /* AMD Extended Performance Monitoring and Debug */
1295  case 0x80000022: {
1296  union cpuid_0x80000022_ebx ebx;
1297 
1298  entry->ecx = entry->edx = 0;
1299  if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1300  entry->eax = entry->ebx;
1301  break;
1302  }
1303 
1305 
1306  if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1307  ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1308  else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1309  ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1310  else
1311  ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1312 
1313  entry->ebx = ebx.full;
1314  break;
1315  }
1316  /*Add support for Centaur's CPUID instruction*/
1317  case 0xC0000000:
1318  /*Just support up to 0xC0000004 now*/
1319  entry->eax = min(entry->eax, 0xC0000004);
1320  break;
1321  case 0xC0000001:
1322  cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1323  break;
1324  case 3: /* Processor serial number */
1325  case 5: /* MONITOR/MWAIT */
1326  case 0xC0000002:
1327  case 0xC0000003:
1328  case 0xC0000004:
1329  default:
1330  entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1331  break;
1332  }
1333 
1334  r = 0;
1335 
1336 out:
1337  put_cpu();
1338 
1339  return r;
1340 }
1341 
1342 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1343  unsigned int type)
1344 {
1345  if (type == KVM_GET_EMULATED_CPUID)
1346  return __do_cpuid_func_emulated(array, func);
1347 
1348  return __do_cpuid_func(array, func);
1349 }
1350 
1351 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1352 
1353 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1354  unsigned int type)
1355 {
1356  u32 limit;
1357  int r;
1358 
1359  if (func == CENTAUR_CPUID_SIGNATURE &&
1360  boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1361  return 0;
1362 
1363  r = do_cpuid_func(array, func, type);
1364  if (r)
1365  return r;
1366 
1367  limit = array->entries[array->nent - 1].eax;
1368  for (func = func + 1; func <= limit; ++func) {
1369  r = do_cpuid_func(array, func, type);
1370  if (r)
1371  break;
1372  }
1373 
1374  return r;
1375 }
1376 
1377 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1378  __u32 num_entries, unsigned int ioctl_type)
1379 {
1380  int i;
1381  __u32 pad[3];
1382 
1383  if (ioctl_type != KVM_GET_EMULATED_CPUID)
1384  return false;
1385 
1386  /*
1387  * We want to make sure that ->padding is being passed clean from
1388  * userspace in case we want to use it for something in the future.
1389  *
1390  * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1391  * have to give ourselves satisfied only with the emulated side. /me
1392  * sheds a tear.
1393  */
1394  for (i = 0; i < num_entries; i++) {
1395  if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1396  return true;
1397 
1398  if (pad[0] || pad[1] || pad[2])
1399  return true;
1400  }
1401  return false;
1402 }
1403 
1404 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1405  struct kvm_cpuid_entry2 __user *entries,
1406  unsigned int type)
1407 {
1408  static const u32 funcs[] = {
1409  0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1410  };
1411 
1412  struct kvm_cpuid_array array = {
1413  .nent = 0,
1414  };
1415  int r, i;
1416 
1417  if (cpuid->nent < 1)
1418  return -E2BIG;
1419  if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1420  cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1421 
1422  if (sanity_check_entries(entries, cpuid->nent, type))
1423  return -EINVAL;
1424 
1425  array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1426  if (!array.entries)
1427  return -ENOMEM;
1428 
1429  array.maxnent = cpuid->nent;
1430 
1431  for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1432  r = get_cpuid_func(&array, funcs[i], type);
1433  if (r)
1434  goto out_free;
1435  }
1436  cpuid->nent = array.nent;
1437 
1438  if (copy_to_user(entries, array.entries,
1439  array.nent * sizeof(struct kvm_cpuid_entry2)))
1440  r = -EFAULT;
1441 
1442 out_free:
1443  kvfree(array.entries);
1444  return r;
1445 }
1446 
1447 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1448  u32 function, u32 index)
1449 {
1450  return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1451  function, index);
1452 }
1454 
1455 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1456  u32 function)
1457 {
1458  return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1460 }
1462 
1463 /*
1464  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1465  * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1466  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1467  * range. Centaur/VIA follows Intel semantics.
1468  *
1469  * A leaf is considered out-of-range if its function is higher than the maximum
1470  * supported leaf of its associated class or if its associated class does not
1471  * exist.
1472  *
1473  * There are three primary classes to be considered, with their respective
1474  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1475  * class exists if a guest CPUID entry for its <base> leaf exists. For a given
1476  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1477  *
1478  * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1479  * - Hypervisor: 0x40000000 - 0x4fffffff
1480  * - Extended: 0x80000000 - 0xbfffffff
1481  * - Centaur: 0xc0000000 - 0xcfffffff
1482  *
1483  * The Hypervisor class is further subdivided into sub-classes that each act as
1484  * their own independent class associated with a 0x100 byte range. E.g. if Qemu
1485  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1486  * CPUID sub-classes are:
1487  *
1488  * - HyperV: 0x40000000 - 0x400000ff
1489  * - KVM: 0x40000100 - 0x400001ff
1490  */
1491 static struct kvm_cpuid_entry2 *
1492 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1493 {
1494  struct kvm_cpuid_entry2 *basic, *class;
1495  u32 function = *fn_ptr;
1496 
1497  basic = kvm_find_cpuid_entry(vcpu, 0);
1498  if (!basic)
1499  return NULL;
1500 
1501  if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1502  is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1503  return NULL;
1504 
1505  if (function >= 0x40000000 && function <= 0x4fffffff)
1506  class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1507  else if (function >= 0xc0000000)
1508  class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1509  else
1510  class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1511 
1512  if (class && function <= class->eax)
1513  return NULL;
1514 
1515  /*
1516  * Leaf specific adjustments are also applied when redirecting to the
1517  * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1518  * entry for CPUID.0xb.index (see below), then the output value for EDX
1519  * needs to be pulled from CPUID.0xb.1.
1520  */
1521  *fn_ptr = basic->eax;
1522 
1523  /*
1524  * The class does not exist or the requested function is out of range;
1525  * the effective CPUID entry is the max basic leaf. Note, the index of
1526  * the original requested leaf is observed!
1527  */
1528  return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1529 }
1530 
1531 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1532  u32 *ecx, u32 *edx, bool exact_only)
1533 {
1534  u32 orig_function = *eax, function = *eax, index = *ecx;
1535  struct kvm_cpuid_entry2 *entry;
1536  bool exact, used_max_basic = false;
1537 
1538  entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1539  exact = !!entry;
1540 
1541  if (!entry && !exact_only) {
1542  entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1543  used_max_basic = !!entry;
1544  }
1545 
1546  if (entry) {
1547  *eax = entry->eax;
1548  *ebx = entry->ebx;
1549  *ecx = entry->ecx;
1550  *edx = entry->edx;
1551  if (function == 7 && index == 0) {
1552  u64 data;
1553  if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1554  (data & TSX_CTRL_CPUID_CLEAR))
1555  *ebx &= ~(F(RTM) | F(HLE));
1556  } else if (function == 0x80000007) {
1557  if (kvm_hv_invtsc_suppressed(vcpu))
1558  *edx &= ~SF(CONSTANT_TSC);
1559  }
1560  } else {
1561  *eax = *ebx = *ecx = *edx = 0;
1562  /*
1563  * When leaf 0BH or 1FH is defined, CL is pass-through
1564  * and EDX is always the x2APIC ID, even for undefined
1565  * subleaves. Index 1 will exist iff the leaf is
1566  * implemented, so we pass through CL iff leaf 1
1567  * exists. EDX can be copied from any existing index.
1568  */
1569  if (function == 0xb || function == 0x1f) {
1570  entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1571  if (entry) {
1572  *ecx = index & 0xff;
1573  *edx = entry->edx;
1574  }
1575  }
1576  }
1577  trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1578  used_max_basic);
1579  return exact;
1580 }
1582 
1583 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1584 {
1585  u32 eax, ebx, ecx, edx;
1586 
1587  if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1588  return 1;
1589 
1590  eax = kvm_rax_read(vcpu);
1591  ecx = kvm_rcx_read(vcpu);
1592  kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1593  kvm_rax_write(vcpu, eax);
1594  kvm_rbx_write(vcpu, ebx);
1595  kvm_rcx_write(vcpu, ecx);
1596  kvm_rdx_write(vcpu, edx);
1597  return kvm_skip_emulated_instruction(vcpu);
1598 }
static __always_inline void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
Definition: cpuid.c:565
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, int nent)
Definition: cpuid.c:414
static struct kvm_cpuid_entry2 * get_next_cpuid(struct kvm_cpuid_array *array)
Definition: cpuid.c:827
#define SF(name)
Definition: cpuid.c:67
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, unsigned int type)
Definition: cpuid.c:1353
static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
Definition: cpuid.c:575
void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
Definition: cpuid.c:238
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
Definition: cpuid.c:1583
#define F
Definition: cpuid.c:64
#define CENTAUR_CPUID_SIGNATURE
Definition: cpuid.c:1351
EXPORT_SYMBOL_GPL(kvm_cpu_caps)
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries)
Definition: cpuid.c:467
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
Definition: cpuid.c:309
static struct kvm_cpuid_entry2 * __kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, int nent)
Definition: cpuid.c:220
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries)
Definition: cpuid.c:535
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
Definition: cpuid.c:878
struct kvm_cpuid_entry2 * kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu, u32 function, u32 index)
Definition: cpuid.c:1447
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, unsigned int type)
Definition: cpuid.c:1342
static struct kvm_cpuid_entry2 * kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
Definition: cpuid.c:232
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly
Definition: cpuid.c:36
static struct kvm_cpuid_entry2 * cpuid_entry2_find(struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
Definition: cpuid.c:82
static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
Definition: cpuid.c:315
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
Definition: cpuid.c:390
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
Definition: cpuid.c:409
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, int nent)
Definition: cpuid.c:170
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool exact_only)
Definition: cpuid.c:1531
u32 xstate_required_size(u64 xstate_bv, bool compacted)
Definition: cpuid.c:39
struct kvm_cpuid_entry2 * kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, u32 function)
Definition: cpuid.c:1455
static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
Definition: cpuid.c:254
static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu, const char *sig)
Definition: cpuid.c:192
static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, int nent)
Definition: cpuid.c:265
static struct kvm_cpuid_entry2 * get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
Definition: cpuid.c:1492
void kvm_set_cpu_caps(void)
Definition: cpuid.c:585
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries, unsigned int type)
Definition: cpuid.c:1404
static int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
Definition: cpuid.c:913
static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
Definition: cpuid.c:551
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries)
Definition: cpuid.c:512
static struct kvm_cpuid_entry2 * do_host_cpuid(struct kvm_cpuid_array *array, u32 function, u32 index)
Definition: cpuid.c:835
static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
Definition: cpuid.c:328
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, __u32 num_entries, unsigned int ioctl_type)
Definition: cpuid.c:1377
#define KVM_CPUID_INDEX_NOT_SIGNIFICANT
Definition: cpuid.c:80
static int kvm_check_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, int nent)
Definition: cpuid.c:133
static int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
Definition: cpuid.h:40
static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
Definition: cpuid.h:226
static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
Definition: cpuid.h:221
static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
Definition: cpuid.h:105
static __always_inline void kvm_governed_feature_set(struct kvm_vcpu *vcpu, unsigned int x86_feature)
Definition: cpuid.h:262
static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry, unsigned int leaf)
Definition: cpuid.h:61
@ KVM_NR_GOVERNED_FEATURES
Definition: cpuid.h:244
static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
Definition: cpuid.h:197
static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu, unsigned int x86_feature)
Definition: cpuid.h:83
static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
Definition: cpuid.h:205
static bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
Definition: cpuid.h:191
void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
Definition: hyperv.c:2297
int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
Definition: hyperv.c:960
static bool kvm_hv_invtsc_suppressed(struct kvm_vcpu *vcpu)
Definition: hyperv.h:299
static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu, unsigned long cr4_bit)
static bool is_guest_vendor_hygon(u32 ebx, u32 ecx, u32 edx)
Definition: kvm_emulate.h:428
static bool is_guest_vendor_amd(u32 ebx, u32 ecx, u32 edx)
Definition: kvm_emulate.h:418
void kvm_apic_set_version(struct kvm_vcpu *vcpu)
Definition: lapic.c:573
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
Definition: mmu.c:5552
bool tdp_enabled
Definition: mmu.c:106
static __always_inline u64 rsvd_bits(int s, int e)
Definition: mmu.h:45
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
Definition: pmu.c:742
struct x86_pmu_capability __read_mostly kvm_pmu_cap
Definition: pmu.c:29
kvm_only_cpuid_leafs
Definition: reverse_cpuid.h:14
@ CPUID_7_1_EDX
Definition: reverse_cpuid.h:16
@ CPUID_7_2_EDX
Definition: reverse_cpuid.h:19
@ CPUID_8000_0022_EAX
Definition: reverse_cpuid.h:18
@ NR_KVM_CPU_CAPS
Definition: reverse_cpuid.h:20
@ CPUID_12_EAX
Definition: reverse_cpuid.h:15
@ NKVMCAPINTS
Definition: reverse_cpuid.h:22
@ CPUID_8000_0007_EDX
Definition: reverse_cpuid.h:17
static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
#define feature_bit(name)
static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature)
static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature, bool set)
static __always_inline u32 * __cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, u32 reg)
static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
Definition: x86.h:12
u64 supported_xss
Definition: x86.h:30
u64 supported_xcr0
Definition: x86.h:29
struct kvm_cpuid_entry2 * entries
Definition: cpuid.c:822
struct kvm_timer lapic_timer
Definition: lapic.h:62
struct kvm_vcpu * vcpu
Definition: lapic.h:64
u32 timer_mode_mask
Definition: lapic.h:51
int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated)
Definition: x86.c:1925
bool __read_mostly enable_pmu
Definition: x86.c:192
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
Definition: x86.c:8916
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
Definition: x86.c:840
#define __cr4_reserved_bits(__cpu_has, __c)
Definition: x86.h:511
static u64 kvm_get_filtered_xcr0(void)
Definition: x86.h:341
static bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
Definition: x86.h:95
static bool kvm_hlt_in_guest(struct kvm *kvm)
Definition: x86.h:414
static bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
Definition: x86.h:288