KVM
svm.c
Go to the documentation of this file.
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44 
45 #include <trace/events/ipi.h>
46 
47 #include "trace.h"
48 
49 #include "svm.h"
50 #include "svm_ops.h"
51 
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54 
55 MODULE_AUTHOR("Qumranet");
57 
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60  X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61  {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65 
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68 
69 static bool erratum_383_found __read_mostly;
70 
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72 
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78 
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80 
81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
82 
83 static const struct svm_direct_access_msrs {
84  u32 index; /* Index of the MSR */
85  bool always; /* True if intercept is initially cleared */
87  { .index = MSR_STAR, .always = true },
88  { .index = MSR_IA32_SYSENTER_CS, .always = true },
89  { .index = MSR_IA32_SYSENTER_EIP, .always = false },
90  { .index = MSR_IA32_SYSENTER_ESP, .always = false },
91 #ifdef CONFIG_X86_64
92  { .index = MSR_GS_BASE, .always = true },
93  { .index = MSR_FS_BASE, .always = true },
94  { .index = MSR_KERNEL_GS_BASE, .always = true },
95  { .index = MSR_LSTAR, .always = true },
96  { .index = MSR_CSTAR, .always = true },
97  { .index = MSR_SYSCALL_MASK, .always = true },
98 #endif
99  { .index = MSR_IA32_SPEC_CTRL, .always = false },
100  { .index = MSR_IA32_PRED_CMD, .always = false },
101  { .index = MSR_IA32_FLUSH_CMD, .always = false },
102  { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
103  { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
104  { .index = MSR_IA32_LASTINTFROMIP, .always = false },
105  { .index = MSR_IA32_LASTINTTOIP, .always = false },
106  { .index = MSR_IA32_XSS, .always = false },
107  { .index = MSR_EFER, .always = false },
108  { .index = MSR_IA32_CR_PAT, .always = false },
109  { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
110  { .index = MSR_TSC_AUX, .always = false },
111  { .index = X2APIC_MSR(APIC_ID), .always = false },
112  { .index = X2APIC_MSR(APIC_LVR), .always = false },
113  { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
114  { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
115  { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
116  { .index = X2APIC_MSR(APIC_EOI), .always = false },
117  { .index = X2APIC_MSR(APIC_RRR), .always = false },
118  { .index = X2APIC_MSR(APIC_LDR), .always = false },
119  { .index = X2APIC_MSR(APIC_DFR), .always = false },
120  { .index = X2APIC_MSR(APIC_SPIV), .always = false },
121  { .index = X2APIC_MSR(APIC_ISR), .always = false },
122  { .index = X2APIC_MSR(APIC_TMR), .always = false },
123  { .index = X2APIC_MSR(APIC_IRR), .always = false },
124  { .index = X2APIC_MSR(APIC_ESR), .always = false },
125  { .index = X2APIC_MSR(APIC_ICR), .always = false },
126  { .index = X2APIC_MSR(APIC_ICR2), .always = false },
127 
128  /*
129  * Note:
130  * AMD does not virtualize APIC TSC-deadline timer mode, but it is
131  * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
132  * the AVIC hardware would generate GP fault. Therefore, always
133  * intercept the MSR 0x832, and do not setup direct_access_msr.
134  */
135  { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
136  { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
137  { .index = X2APIC_MSR(APIC_LVT0), .always = false },
138  { .index = X2APIC_MSR(APIC_LVT1), .always = false },
139  { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
140  { .index = X2APIC_MSR(APIC_TMICT), .always = false },
141  { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
142  { .index = X2APIC_MSR(APIC_TDCR), .always = false },
143  { .index = MSR_INVALID, .always = false },
144 };
145 
146 /*
147  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
148  * pause_filter_count: On processors that support Pause filtering(indicated
149  * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
150  * count value. On VMRUN this value is loaded into an internal counter.
151  * Each time a pause instruction is executed, this counter is decremented
152  * until it reaches zero at which time a #VMEXIT is generated if pause
153  * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
154  * Intercept Filtering for more details.
155  * This also indicate if ple logic enabled.
156  *
157  * pause_filter_thresh: In addition, some processor families support advanced
158  * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
159  * the amount of time a guest is allowed to execute in a pause loop.
160  * In this mode, a 16-bit pause filter threshold field is added in the
161  * VMCB. The threshold value is a cycle count that is used to reset the
162  * pause counter. As with simple pause filtering, VMRUN loads the pause
163  * count value from VMCB into an internal counter. Then, on each pause
164  * instruction the hardware checks the elapsed number of cycles since
165  * the most recent pause instruction against the pause filter threshold.
166  * If the elapsed cycle count is greater than the pause filter threshold,
167  * then the internal pause count is reloaded from the VMCB and execution
168  * continues. If the elapsed cycle count is less than the pause filter
169  * threshold, then the internal pause count is decremented. If the count
170  * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
171  * triggered. If advanced pause filtering is supported and pause filter
172  * threshold field is set to zero, the filter will operate in the simpler,
173  * count only mode.
174  */
175 
176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
178 
181 
182 /* Default doubles per-vcpu window every exit. */
185 
186 /* Default resets per-vcpu window every exit to pause_filter_count. */
189 
190 /* Default is to compute the maximum so we can never overflow. */
193 
194 /*
195  * Use nested page tables by default. Note, NPT may get forced off by
196  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
197  */
198 bool npt_enabled = true;
199 module_param_named(npt, npt_enabled, bool, 0444);
200 
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, 0444);
204 
205 /* enable/disable Next RIP Save */
206 int nrips = true;
207 module_param(nrips, int, 0444);
208 
209 /* enable/disable Virtual VMLOAD VMSAVE */
210 static int vls = true;
211 module_param(vls, int, 0444);
212 
213 /* enable/disable Virtual GIF */
214 int vgif = true;
215 module_param(vgif, int, 0444);
216 
217 /* enable/disable LBR virtualization */
218 static int lbrv = true;
219 module_param(lbrv, int, 0444);
220 
221 static int tsc_scaling = true;
223 
224 /*
225  * enable / disable AVIC. Because the defaults differ for APICv
226  * support between VMX and SVM we cannot use module_param_named.
227  */
228 static bool avic;
229 module_param(avic, bool, 0444);
230 
233 
234 
235 bool intercept_smi = true;
237 
238 bool vnmi = true;
239 module_param(vnmi, bool, 0444);
240 
241 static bool svm_gp_erratum_intercept = true;
242 
243 static u8 rsm_ins_bytes[] = "\x0f\xaa";
244 
245 static unsigned long iopm_base;
246 
247 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
248 
249 /*
250  * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
251  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
252  *
253  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
254  * defer the restoration of TSC_AUX until the CPU returns to userspace.
255  */
256 static int tsc_aux_uret_slot __read_mostly = -1;
257 
258 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
259 
260 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
261 #define MSRS_RANGE_SIZE 2048
262 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
263 
264 u32 svm_msrpm_offset(u32 msr)
265 {
266  u32 offset;
267  int i;
268 
269  for (i = 0; i < NUM_MSR_MAPS; i++) {
270  if (msr < msrpm_ranges[i] ||
271  msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
272  continue;
273 
274  offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
275  offset += (i * MSRS_RANGE_SIZE); /* add range offset */
276 
277  /* Now we have the u8 offset - but need the u32 offset */
278  return offset / 4;
279  }
280 
281  /* MSR not in any range */
282  return MSR_INVALID;
283 }
284 
285 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
286 
287 static int get_npt_level(void)
288 {
289 #ifdef CONFIG_X86_64
290  return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
291 #else
292  return PT32E_ROOT_LEVEL;
293 #endif
294 }
295 
296 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
297 {
298  struct vcpu_svm *svm = to_svm(vcpu);
299  u64 old_efer = vcpu->arch.efer;
300  vcpu->arch.efer = efer;
301 
302  if (!npt_enabled) {
303  /* Shadow paging assumes NX to be available. */
304  efer |= EFER_NX;
305 
306  if (!(efer & EFER_LMA))
307  efer &= ~EFER_LME;
308  }
309 
310  if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
311  if (!(efer & EFER_SVME)) {
313  svm_set_gif(svm, true);
314  /* #GP intercept is still needed for vmware backdoor */
316  clr_exception_intercept(svm, GP_VECTOR);
317 
318  /*
319  * Free the nested guest state, unless we are in SMM.
320  * In this case we will return to the nested guest
321  * as soon as we leave SMM.
322  */
323  if (!is_smm(vcpu))
324  svm_free_nested(svm);
325 
326  } else {
327  int ret = svm_allocate_nested(svm);
328 
329  if (ret) {
330  vcpu->arch.efer = old_efer;
331  return ret;
332  }
333 
334  /*
335  * Never intercept #GP for SEV guests, KVM can't
336  * decrypt guest memory to workaround the erratum.
337  */
339  set_exception_intercept(svm, GP_VECTOR);
340  }
341  }
342 
343  svm->vmcb->save.efer = efer | EFER_SVME;
345  return 0;
346 }
347 
348 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
349 {
350  struct vcpu_svm *svm = to_svm(vcpu);
351  u32 ret = 0;
352 
353  if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
354  ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
355  return ret;
356 }
357 
358 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
359 {
360  struct vcpu_svm *svm = to_svm(vcpu);
361 
362  if (mask == 0)
363  svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
364  else
365  svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
366 
367 }
368 
369 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
370  bool commit_side_effects)
371 {
372  struct vcpu_svm *svm = to_svm(vcpu);
373  unsigned long old_rflags;
374 
375  /*
376  * SEV-ES does not expose the next RIP. The RIP update is controlled by
377  * the type of exit and the #VC handler in the guest.
378  */
379  if (sev_es_guest(vcpu->kvm))
380  goto done;
381 
382  if (nrips && svm->vmcb->control.next_rip != 0) {
383  WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
384  svm->next_rip = svm->vmcb->control.next_rip;
385  }
386 
387  if (!svm->next_rip) {
388  if (unlikely(!commit_side_effects))
389  old_rflags = svm->vmcb->save.rflags;
390 
391  if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
392  return 0;
393 
394  if (unlikely(!commit_side_effects))
395  svm->vmcb->save.rflags = old_rflags;
396  } else {
397  kvm_rip_write(vcpu, svm->next_rip);
398  }
399 
400 done:
401  if (likely(commit_side_effects))
403 
404  return 1;
405 }
406 
407 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
408 {
410 }
411 
412 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
413 {
414  unsigned long rip, old_rip = kvm_rip_read(vcpu);
415  struct vcpu_svm *svm = to_svm(vcpu);
416 
417  /*
418  * Due to architectural shortcomings, the CPU doesn't always provide
419  * NextRIP, e.g. if KVM intercepted an exception that occurred while
420  * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
421  * the instruction even if NextRIP is supported to acquire the next
422  * RIP so that it can be shoved into the NextRIP field, otherwise
423  * hardware will fail to advance guest RIP during event injection.
424  * Drop the exception/interrupt if emulation fails and effectively
425  * retry the instruction, it's the least awful option. If NRIPS is
426  * in use, the skip must not commit any side effects such as clearing
427  * the interrupt shadow or RFLAGS.RF.
428  */
430  return -EIO;
431 
432  rip = kvm_rip_read(vcpu);
433 
434  /*
435  * Save the injection information, even when using next_rip, as the
436  * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
437  * doesn't complete due to a VM-Exit occurring while the CPU is
438  * vectoring the event. Decoding the instruction isn't guaranteed to
439  * work as there may be no backing instruction, e.g. if the event is
440  * being injected by L1 for L2, or if the guest is patching INT3 into
441  * a different instruction.
442  */
443  svm->soft_int_injected = true;
444  svm->soft_int_csbase = svm->vmcb->save.cs.base;
445  svm->soft_int_old_rip = old_rip;
446  svm->soft_int_next_rip = rip;
447 
448  if (nrips)
449  kvm_rip_write(vcpu, old_rip);
450 
451  if (static_cpu_has(X86_FEATURE_NRIPS))
452  svm->vmcb->control.next_rip = rip;
453 
454  return 0;
455 }
456 
457 static void svm_inject_exception(struct kvm_vcpu *vcpu)
458 {
459  struct kvm_queued_exception *ex = &vcpu->arch.exception;
460  struct vcpu_svm *svm = to_svm(vcpu);
461 
463 
464  if (kvm_exception_is_soft(ex->vector) &&
466  return;
467 
468  svm->vmcb->control.event_inj = ex->vector
469  | SVM_EVTINJ_VALID
470  | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
471  | SVM_EVTINJ_TYPE_EXEPT;
472  svm->vmcb->control.event_inj_err = ex->error_code;
473 }
474 
475 static void svm_init_erratum_383(void)
476 {
477  u32 low, high;
478  int err;
479  u64 val;
480 
481  if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
482  return;
483 
484  /* Use _safe variants to not break nested virtualization */
485  val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
486  if (err)
487  return;
488 
489  val |= (1ULL << 47);
490 
491  low = lower_32_bits(val);
492  high = upper_32_bits(val);
493 
494  native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
495 
496  erratum_383_found = true;
497 }
498 
499 static void svm_init_osvw(struct kvm_vcpu *vcpu)
500 {
501  /*
502  * Guests should see errata 400 and 415 as fixed (assuming that
503  * HLT and IO instructions are intercepted).
504  */
505  vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
506  vcpu->arch.osvw.status = osvw_status & ~(6ULL);
507 
508  /*
509  * By increasing VCPU's osvw.length to 3 we are telling the guest that
510  * all osvw.status bits inside that length, including bit 0 (which is
511  * reserved for erratum 298), are valid. However, if host processor's
512  * osvw_len is 0 then osvw_status[0] carries no information. We need to
513  * be conservative here and therefore we tell the guest that erratum 298
514  * is present (because we really don't know).
515  */
516  if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
517  vcpu->arch.osvw.status |= 1;
518 }
519 
520 static bool __kvm_is_svm_supported(void)
521 {
522  int cpu = smp_processor_id();
523  struct cpuinfo_x86 *c = &cpu_data(cpu);
524 
525  if (c->x86_vendor != X86_VENDOR_AMD &&
526  c->x86_vendor != X86_VENDOR_HYGON) {
527  pr_err("CPU %d isn't AMD or Hygon\n", cpu);
528  return false;
529  }
530 
531  if (!cpu_has(c, X86_FEATURE_SVM)) {
532  pr_err("SVM not supported by CPU %d\n", cpu);
533  return false;
534  }
535 
536  if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
537  pr_info("KVM is unsupported when running as an SEV guest\n");
538  return false;
539  }
540 
541  return true;
542 }
543 
544 static bool kvm_is_svm_supported(void)
545 {
546  bool supported;
547 
548  migrate_disable();
549  supported = __kvm_is_svm_supported();
550  migrate_enable();
551 
552  return supported;
553 }
554 
556 {
557  if (!__kvm_is_svm_supported())
558  return -EIO;
559 
560  return 0;
561 }
562 
563 static void __svm_write_tsc_multiplier(u64 multiplier)
564 {
565  if (multiplier == __this_cpu_read(current_tsc_ratio))
566  return;
567 
568  wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
569  __this_cpu_write(current_tsc_ratio, multiplier);
570 }
571 
572 static inline void kvm_cpu_svm_disable(void)
573 {
574  uint64_t efer;
575 
576  wrmsrl(MSR_VM_HSAVE_PA, 0);
577  rdmsrl(MSR_EFER, efer);
578  if (efer & EFER_SVME) {
579  /*
580  * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
581  * NMI aren't blocked.
582  */
583  stgi();
584  wrmsrl(MSR_EFER, efer & ~EFER_SVME);
585  }
586 }
587 
588 static void svm_emergency_disable(void)
589 {
590  kvm_rebooting = true;
591 
593 }
594 
595 static void svm_hardware_disable(void)
596 {
597  /* Make sure we clean up behind us */
598  if (tsc_scaling)
599  __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
600 
602 
603  amd_pmu_disable_virt();
604 }
605 
606 static int svm_hardware_enable(void)
607 {
608 
609  struct svm_cpu_data *sd;
610  uint64_t efer;
611  int me = raw_smp_processor_id();
612 
613  rdmsrl(MSR_EFER, efer);
614  if (efer & EFER_SVME)
615  return -EBUSY;
616 
617  sd = per_cpu_ptr(&svm_data, me);
618  sd->asid_generation = 1;
619  sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
620  sd->next_asid = sd->max_asid + 1;
621  sd->min_asid = max_sev_asid + 1;
622 
623  wrmsrl(MSR_EFER, efer | EFER_SVME);
624 
625  wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
626 
627  if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
628  /*
629  * Set the default value, even if we don't use TSC scaling
630  * to avoid having stale value in the msr
631  */
632  __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
633  }
634 
635 
636  /*
637  * Get OSVW bits.
638  *
639  * Note that it is possible to have a system with mixed processor
640  * revisions and therefore different OSVW bits. If bits are not the same
641  * on different processors then choose the worst case (i.e. if erratum
642  * is present on one processor and not on another then assume that the
643  * erratum is present everywhere).
644  */
645  if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
646  uint64_t len, status = 0;
647  int err;
648 
649  len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
650  if (!err)
651  status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
652  &err);
653 
654  if (err)
655  osvw_status = osvw_len = 0;
656  else {
657  if (len < osvw_len)
658  osvw_len = len;
659  osvw_status |= status;
660  osvw_status &= (1ULL << osvw_len) - 1;
661  }
662  } else
663  osvw_status = osvw_len = 0;
664 
666 
667  amd_pmu_enable_virt();
668 
669  /*
670  * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
671  * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
672  * Since Linux does not change the value of TSC_AUX once set, prime the
673  * TSC_AUX field now to avoid a RDMSR on every vCPU run.
674  */
675  if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
676  struct sev_es_save_area *hostsa;
677  u32 __maybe_unused msr_hi;
678 
679  hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
680 
681  rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
682  }
683 
684  return 0;
685 }
686 
687 static void svm_cpu_uninit(int cpu)
688 {
689  struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
690 
691  if (!sd->save_area)
692  return;
693 
694  kfree(sd->sev_vmcbs);
695  __free_page(sd->save_area);
696  sd->save_area_pa = 0;
697  sd->save_area = NULL;
698 }
699 
700 static int svm_cpu_init(int cpu)
701 {
702  struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
703  int ret = -ENOMEM;
704 
705  memset(sd, 0, sizeof(struct svm_cpu_data));
706  sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
707  if (!sd->save_area)
708  return ret;
709 
710  ret = sev_cpu_init(sd);
711  if (ret)
712  goto free_save_area;
713 
715  return 0;
716 
717 free_save_area:
718  __free_page(sd->save_area);
719  sd->save_area = NULL;
720  return ret;
721 
722 }
723 
724 static void set_dr_intercepts(struct vcpu_svm *svm)
725 {
726  struct vmcb *vmcb = svm->vmcb01.ptr;
727 
728  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
729  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
730  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
731  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
732  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
733  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
734  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
735  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
736  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
737  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
738  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
739  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
740  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
741  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
742  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
743  vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
744 
745  recalc_intercepts(svm);
746 }
747 
748 static void clr_dr_intercepts(struct vcpu_svm *svm)
749 {
750  struct vmcb *vmcb = svm->vmcb01.ptr;
751 
752  vmcb->control.intercepts[INTERCEPT_DR] = 0;
753 
754  recalc_intercepts(svm);
755 }
756 
757 static int direct_access_msr_slot(u32 msr)
758 {
759  u32 i;
760 
761  for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
762  if (direct_access_msrs[i].index == msr)
763  return i;
764 
765  return -ENOENT;
766 }
767 
768 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
769  int write)
770 {
771  struct vcpu_svm *svm = to_svm(vcpu);
772  int slot = direct_access_msr_slot(msr);
773 
774  if (slot == -ENOENT)
775  return;
776 
777  /* Set the shadow bitmaps to the desired intercept states */
778  if (read)
779  set_bit(slot, svm->shadow_msr_intercept.read);
780  else
781  clear_bit(slot, svm->shadow_msr_intercept.read);
782 
783  if (write)
784  set_bit(slot, svm->shadow_msr_intercept.write);
785  else
786  clear_bit(slot, svm->shadow_msr_intercept.write);
787 }
788 
789 static bool valid_msr_intercept(u32 index)
790 {
791  return direct_access_msr_slot(index) != -ENOENT;
792 }
793 
794 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
795 {
796  u8 bit_write;
797  unsigned long tmp;
798  u32 offset;
799  u32 *msrpm;
800 
801  /*
802  * For non-nested case:
803  * If the L01 MSR bitmap does not intercept the MSR, then we need to
804  * save it.
805  *
806  * For nested case:
807  * If the L02 MSR bitmap does not intercept the MSR, then we need to
808  * save it.
809  */
811  to_svm(vcpu)->msrpm;
812 
813  offset = svm_msrpm_offset(msr);
814  bit_write = 2 * (msr & 0x0f) + 1;
815  tmp = msrpm[offset];
816 
817  BUG_ON(offset == MSR_INVALID);
818 
819  return test_bit(bit_write, &tmp);
820 }
821 
822 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
823  u32 msr, int read, int write)
824 {
825  struct vcpu_svm *svm = to_svm(vcpu);
826  u8 bit_read, bit_write;
827  unsigned long tmp;
828  u32 offset;
829 
830  /*
831  * If this warning triggers extend the direct_access_msrs list at the
832  * beginning of the file
833  */
834  WARN_ON(!valid_msr_intercept(msr));
835 
836  /* Enforce non allowed MSRs to trap */
837  if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
838  read = 0;
839 
840  if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
841  write = 0;
842 
843  offset = svm_msrpm_offset(msr);
844  bit_read = 2 * (msr & 0x0f);
845  bit_write = 2 * (msr & 0x0f) + 1;
846  tmp = msrpm[offset];
847 
848  BUG_ON(offset == MSR_INVALID);
849 
850  read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
851  write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
852 
853  msrpm[offset] = tmp;
854 
856  svm->nested.force_msr_bitmap_recalc = true;
857 }
858 
859 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
860  int read, int write)
861 {
862  set_shadow_msr_intercept(vcpu, msr, read, write);
863  set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
864 }
865 
867 {
868  unsigned int order = get_order(MSRPM_SIZE);
869  struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
870  u32 *msrpm;
871 
872  if (!pages)
873  return NULL;
874 
875  msrpm = page_address(pages);
876  memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
877 
878  return msrpm;
879 }
880 
881 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
882 {
883  int i;
884 
885  for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
886  if (!direct_access_msrs[i].always)
887  continue;
888  set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
889  }
890 }
891 
892 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
893 {
894  int i;
895 
896  if (intercept == svm->x2avic_msrs_intercepted)
897  return;
898 
899  if (!x2avic_enabled)
900  return;
901 
902  for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
903  int index = direct_access_msrs[i].index;
904 
905  if ((index < APIC_BASE_MSR) ||
906  (index > APIC_BASE_MSR + 0xff))
907  continue;
908  set_msr_interception(&svm->vcpu, svm->msrpm, index,
909  !intercept, !intercept);
910  }
911 
912  svm->x2avic_msrs_intercepted = intercept;
913 }
914 
915 void svm_vcpu_free_msrpm(u32 *msrpm)
916 {
917  __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
918 }
919 
920 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
921 {
922  struct vcpu_svm *svm = to_svm(vcpu);
923  u32 i;
924 
925  /*
926  * Set intercept permissions for all direct access MSRs again. They
927  * will automatically get filtered through the MSR filter, so we are
928  * back in sync after this.
929  */
930  for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
931  u32 msr = direct_access_msrs[i].index;
932  u32 read = test_bit(i, svm->shadow_msr_intercept.read);
933  u32 write = test_bit(i, svm->shadow_msr_intercept.write);
934 
935  set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
936  }
937 }
938 
939 static void add_msr_offset(u32 offset)
940 {
941  int i;
942 
943  for (i = 0; i < MSRPM_OFFSETS; ++i) {
944 
945  /* Offset already in list? */
946  if (msrpm_offsets[i] == offset)
947  return;
948 
949  /* Slot used by another offset? */
950  if (msrpm_offsets[i] != MSR_INVALID)
951  continue;
952 
953  /* Add offset to list */
954  msrpm_offsets[i] = offset;
955 
956  return;
957  }
958 
959  /*
960  * If this BUG triggers the msrpm_offsets table has an overflow. Just
961  * increase MSRPM_OFFSETS in this case.
962  */
963  BUG();
964 }
965 
966 static void init_msrpm_offsets(void)
967 {
968  int i;
969 
970  memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
971 
972  for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
973  u32 offset;
974 
975  offset = svm_msrpm_offset(direct_access_msrs[i].index);
976  BUG_ON(offset == MSR_INVALID);
977 
978  add_msr_offset(offset);
979  }
980 }
981 
982 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
983 {
984  to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
985  to_vmcb->save.br_from = from_vmcb->save.br_from;
986  to_vmcb->save.br_to = from_vmcb->save.br_to;
987  to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
988  to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
989 
990  vmcb_mark_dirty(to_vmcb, VMCB_LBR);
991 }
992 
993 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
994 {
995  struct vcpu_svm *svm = to_svm(vcpu);
996 
997  svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
998  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
999  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1000  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1001  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1002 
1003  /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1004  if (is_guest_mode(vcpu))
1005  svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1006 }
1007 
1008 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1009 {
1010  struct vcpu_svm *svm = to_svm(vcpu);
1011 
1012  svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1013  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1014  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1015  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1016  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1017 
1018  /*
1019  * Move the LBR msrs back to the vmcb01 to avoid copying them
1020  * on nested guest entries.
1021  */
1022  if (is_guest_mode(vcpu))
1023  svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1024 }
1025 
1026 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1027 {
1028  /*
1029  * If LBR virtualization is disabled, the LBR MSRs are always kept in
1030  * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
1031  * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1032  */
1033  return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1034  svm->vmcb01.ptr;
1035 }
1036 
1037 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1038 {
1039  struct vcpu_svm *svm = to_svm(vcpu);
1040  bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1041  bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1042  (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1043  (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1044 
1045  if (enable_lbrv == current_enable_lbrv)
1046  return;
1047 
1048  if (enable_lbrv)
1050  else
1052 }
1053 
1055 {
1056  svm->nmi_singlestep = false;
1057 
1058  if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1059  /* Clear our flags if they were not set by the guest */
1060  if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1061  svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1062  if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1063  svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1064  }
1065 }
1066 
1067 static void grow_ple_window(struct kvm_vcpu *vcpu)
1068 {
1069  struct vcpu_svm *svm = to_svm(vcpu);
1070  struct vmcb_control_area *control = &svm->vmcb->control;
1071  int old = control->pause_filter_count;
1072 
1073  if (kvm_pause_in_guest(vcpu->kvm))
1074  return;
1075 
1076  control->pause_filter_count = __grow_ple_window(old,
1080 
1081  if (control->pause_filter_count != old) {
1083  trace_kvm_ple_window_update(vcpu->vcpu_id,
1084  control->pause_filter_count, old);
1085  }
1086 }
1087 
1088 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1089 {
1090  struct vcpu_svm *svm = to_svm(vcpu);
1091  struct vmcb_control_area *control = &svm->vmcb->control;
1092  int old = control->pause_filter_count;
1093 
1094  if (kvm_pause_in_guest(vcpu->kvm))
1095  return;
1096 
1097  control->pause_filter_count =
1098  __shrink_ple_window(old,
1102  if (control->pause_filter_count != old) {
1104  trace_kvm_ple_window_update(vcpu->vcpu_id,
1105  control->pause_filter_count, old);
1106  }
1107 }
1108 
1109 static void svm_hardware_unsetup(void)
1110 {
1111  int cpu;
1112 
1114 
1115  for_each_possible_cpu(cpu)
1116  svm_cpu_uninit(cpu);
1117 
1118  __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1119  get_order(IOPM_SIZE));
1120  iopm_base = 0;
1121 }
1122 
1123 static void init_seg(struct vmcb_seg *seg)
1124 {
1125  seg->selector = 0;
1126  seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1127  SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1128  seg->limit = 0xffff;
1129  seg->base = 0;
1130 }
1131 
1132 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1133 {
1134  seg->selector = 0;
1135  seg->attrib = SVM_SELECTOR_P_MASK | type;
1136  seg->limit = 0xffff;
1137  seg->base = 0;
1138 }
1139 
1140 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1141 {
1142  struct vcpu_svm *svm = to_svm(vcpu);
1143 
1144  return svm->nested.ctl.tsc_offset;
1145 }
1146 
1147 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1148 {
1149  struct vcpu_svm *svm = to_svm(vcpu);
1150 
1151  return svm->tsc_ratio_msr;
1152 }
1153 
1154 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1155 {
1156  struct vcpu_svm *svm = to_svm(vcpu);
1157 
1158  svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1159  svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1161 }
1162 
1163 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1164 {
1165  preempt_disable();
1167  __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1168  preempt_enable();
1169 }
1170 
1171 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1172 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1173  struct vcpu_svm *svm)
1174 {
1175  /*
1176  * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1177  * roots, or if INVPCID is disabled in the guest to inject #UD.
1178  */
1179  if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1180  if (!npt_enabled ||
1181  !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1182  svm_set_intercept(svm, INTERCEPT_INVPCID);
1183  else
1184  svm_clr_intercept(svm, INTERCEPT_INVPCID);
1185  }
1186 
1187  if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1188  if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1189  svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1190  else
1191  svm_set_intercept(svm, INTERCEPT_RDTSCP);
1192  }
1193 }
1194 
1195 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1196 {
1197  struct vcpu_svm *svm = to_svm(vcpu);
1198 
1199  if (guest_cpuid_is_intel(vcpu)) {
1200  /*
1201  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1202  * accesses because the processor only stores 32 bits.
1203  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1204  */
1205  svm_set_intercept(svm, INTERCEPT_VMLOAD);
1206  svm_set_intercept(svm, INTERCEPT_VMSAVE);
1207  svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1208 
1209  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1210  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1211  } else {
1212  /*
1213  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1214  * in VMCB and clear intercepts to avoid #VMEXIT.
1215  */
1216  if (vls) {
1217  svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1218  svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1219  svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1220  }
1221  /* No need to intercept these MSRs */
1222  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1223  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1224  }
1225 }
1226 
1227 static void init_vmcb(struct kvm_vcpu *vcpu)
1228 {
1229  struct vcpu_svm *svm = to_svm(vcpu);
1230  struct vmcb *vmcb = svm->vmcb01.ptr;
1231  struct vmcb_control_area *control = &vmcb->control;
1232  struct vmcb_save_area *save = &vmcb->save;
1233 
1234  svm_set_intercept(svm, INTERCEPT_CR0_READ);
1235  svm_set_intercept(svm, INTERCEPT_CR3_READ);
1236  svm_set_intercept(svm, INTERCEPT_CR4_READ);
1237  svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1238  svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1239  svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1240  if (!kvm_vcpu_apicv_active(vcpu))
1241  svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1242 
1243  set_dr_intercepts(svm);
1244 
1245  set_exception_intercept(svm, PF_VECTOR);
1246  set_exception_intercept(svm, UD_VECTOR);
1247  set_exception_intercept(svm, MC_VECTOR);
1248  set_exception_intercept(svm, AC_VECTOR);
1249  set_exception_intercept(svm, DB_VECTOR);
1250  /*
1251  * Guest access to VMware backdoor ports could legitimately
1252  * trigger #GP because of TSS I/O permission bitmap.
1253  * We intercept those #GP and allow access to them anyway
1254  * as VMware does.
1255  */
1257  set_exception_intercept(svm, GP_VECTOR);
1258 
1259  svm_set_intercept(svm, INTERCEPT_INTR);
1260  svm_set_intercept(svm, INTERCEPT_NMI);
1261 
1262  if (intercept_smi)
1263  svm_set_intercept(svm, INTERCEPT_SMI);
1264 
1265  svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1266  svm_set_intercept(svm, INTERCEPT_RDPMC);
1267  svm_set_intercept(svm, INTERCEPT_CPUID);
1268  svm_set_intercept(svm, INTERCEPT_INVD);
1269  svm_set_intercept(svm, INTERCEPT_INVLPG);
1270  svm_set_intercept(svm, INTERCEPT_INVLPGA);
1271  svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1272  svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1273  svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1274  svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1275  svm_set_intercept(svm, INTERCEPT_VMRUN);
1276  svm_set_intercept(svm, INTERCEPT_VMMCALL);
1277  svm_set_intercept(svm, INTERCEPT_VMLOAD);
1278  svm_set_intercept(svm, INTERCEPT_VMSAVE);
1279  svm_set_intercept(svm, INTERCEPT_STGI);
1280  svm_set_intercept(svm, INTERCEPT_CLGI);
1281  svm_set_intercept(svm, INTERCEPT_SKINIT);
1282  svm_set_intercept(svm, INTERCEPT_WBINVD);
1283  svm_set_intercept(svm, INTERCEPT_XSETBV);
1284  svm_set_intercept(svm, INTERCEPT_RDPRU);
1285  svm_set_intercept(svm, INTERCEPT_RSM);
1286 
1287  if (!kvm_mwait_in_guest(vcpu->kvm)) {
1288  svm_set_intercept(svm, INTERCEPT_MONITOR);
1289  svm_set_intercept(svm, INTERCEPT_MWAIT);
1290  }
1291 
1292  if (!kvm_hlt_in_guest(vcpu->kvm))
1293  svm_set_intercept(svm, INTERCEPT_HLT);
1294 
1295  control->iopm_base_pa = __sme_set(iopm_base);
1296  control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1297  control->int_ctl = V_INTR_MASKING_MASK;
1298 
1299  init_seg(&save->es);
1300  init_seg(&save->ss);
1301  init_seg(&save->ds);
1302  init_seg(&save->fs);
1303  init_seg(&save->gs);
1304 
1305  save->cs.selector = 0xf000;
1306  save->cs.base = 0xffff0000;
1307  /* Executable/Readable Code Segment */
1308  save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1309  SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1310  save->cs.limit = 0xffff;
1311 
1312  save->gdtr.base = 0;
1313  save->gdtr.limit = 0xffff;
1314  save->idtr.base = 0;
1315  save->idtr.limit = 0xffff;
1316 
1317  init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1318  init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1319 
1320  if (npt_enabled) {
1321  /* Setup VMCB for Nested Paging */
1322  control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1323  svm_clr_intercept(svm, INTERCEPT_INVLPG);
1324  clr_exception_intercept(svm, PF_VECTOR);
1325  svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1326  svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1327  save->g_pat = vcpu->arch.pat;
1328  save->cr3 = 0;
1329  }
1330  svm->current_vmcb->asid_generation = 0;
1331  svm->asid = 0;
1332 
1333  svm->nested.vmcb12_gpa = INVALID_GPA;
1334  svm->nested.last_vmcb12_gpa = INVALID_GPA;
1335 
1336  if (!kvm_pause_in_guest(vcpu->kvm)) {
1337  control->pause_filter_count = pause_filter_count;
1338  if (pause_filter_thresh)
1339  control->pause_filter_thresh = pause_filter_thresh;
1340  svm_set_intercept(svm, INTERCEPT_PAUSE);
1341  } else {
1342  svm_clr_intercept(svm, INTERCEPT_PAUSE);
1343  }
1344 
1346 
1347  /*
1348  * If the host supports V_SPEC_CTRL then disable the interception
1349  * of MSR_IA32_SPEC_CTRL.
1350  */
1351  if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1352  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1353 
1354  if (kvm_vcpu_apicv_active(vcpu))
1355  avic_init_vmcb(svm, vmcb);
1356 
1357  if (vnmi)
1358  svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1359 
1360  if (vgif) {
1361  svm_clr_intercept(svm, INTERCEPT_STGI);
1362  svm_clr_intercept(svm, INTERCEPT_CLGI);
1363  svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1364  }
1365 
1366  if (sev_guest(vcpu->kvm))
1367  sev_init_vmcb(svm);
1368 
1369  svm_hv_init_vmcb(vmcb);
1371 
1372  vmcb_mark_all_dirty(vmcb);
1373 
1374  enable_gif(svm);
1375 }
1376 
1377 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1378 {
1379  struct vcpu_svm *svm = to_svm(vcpu);
1380 
1382 
1384  vcpu->arch.microcode_version = 0x01000065;
1386 
1387  svm->nmi_masked = false;
1388  svm->awaiting_iret_completion = false;
1389 
1390  if (sev_es_guest(vcpu->kvm))
1391  sev_es_vcpu_reset(svm);
1392 }
1393 
1394 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1395 {
1396  struct vcpu_svm *svm = to_svm(vcpu);
1397 
1398  svm->spec_ctrl = 0;
1399  svm->virt_spec_ctrl = 0;
1400 
1401  init_vmcb(vcpu);
1402 
1403  if (!init_event)
1405 }
1406 
1407 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1408 {
1409  svm->current_vmcb = target_vmcb;
1410  svm->vmcb = target_vmcb->ptr;
1411 }
1412 
1413 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1414 {
1415  struct vcpu_svm *svm;
1416  struct page *vmcb01_page;
1417  struct page *vmsa_page = NULL;
1418  int err;
1419 
1420  BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1421  svm = to_svm(vcpu);
1422 
1423  err = -ENOMEM;
1424  vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1425  if (!vmcb01_page)
1426  goto out;
1427 
1428  if (sev_es_guest(vcpu->kvm)) {
1429  /*
1430  * SEV-ES guests require a separate VMSA page used to contain
1431  * the encrypted register state of the guest.
1432  */
1433  vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1434  if (!vmsa_page)
1435  goto error_free_vmcb_page;
1436 
1437  /*
1438  * SEV-ES guests maintain an encrypted version of their FPU
1439  * state which is restored and saved on VMRUN and VMEXIT.
1440  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1441  * do xsave/xrstor on it.
1442  */
1443  fpstate_set_confidential(&vcpu->arch.guest_fpu);
1444  }
1445 
1446  err = avic_init_vcpu(svm);
1447  if (err)
1448  goto error_free_vmsa_page;
1449 
1450  svm->msrpm = svm_vcpu_alloc_msrpm();
1451  if (!svm->msrpm) {
1452  err = -ENOMEM;
1453  goto error_free_vmsa_page;
1454  }
1455 
1456  svm->x2avic_msrs_intercepted = true;
1457 
1458  svm->vmcb01.ptr = page_address(vmcb01_page);
1459  svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1460  svm_switch_vmcb(svm, &svm->vmcb01);
1461 
1462  if (vmsa_page)
1463  svm->sev_es.vmsa = page_address(vmsa_page);
1464 
1465  svm->guest_state_loaded = false;
1466 
1467  return 0;
1468 
1469 error_free_vmsa_page:
1470  if (vmsa_page)
1471  __free_page(vmsa_page);
1472 error_free_vmcb_page:
1473  __free_page(vmcb01_page);
1474 out:
1475  return err;
1476 }
1477 
1478 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1479 {
1480  int i;
1481 
1482  for_each_online_cpu(i)
1483  cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1484 }
1485 
1486 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1487 {
1488  struct vcpu_svm *svm = to_svm(vcpu);
1489 
1490  /*
1491  * The vmcb page can be recycled, causing a false negative in
1492  * svm_vcpu_load(). So, ensure that no logical CPU has this
1493  * vmcb page recorded as its current vmcb.
1494  */
1496 
1498  svm_free_nested(svm);
1499 
1501 
1502  __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1503  __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1504 }
1505 
1506 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1507 {
1508  struct vcpu_svm *svm = to_svm(vcpu);
1509  struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1510 
1511  if (sev_es_guest(vcpu->kvm))
1512  sev_es_unmap_ghcb(svm);
1513 
1514  if (svm->guest_state_loaded)
1515  return;
1516 
1517  /*
1518  * Save additional host state that will be restored on VMEXIT (sev-es)
1519  * or subsequent vmload of host save area.
1520  */
1521  vmsave(sd->save_area_pa);
1522  if (sev_es_guest(vcpu->kvm)) {
1523  struct sev_es_save_area *hostsa;
1524  hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1525 
1527  }
1528 
1529  if (tsc_scaling)
1530  __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1531 
1532  /*
1533  * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1534  * available. The user return MSR support is not required in this case
1535  * because TSC_AUX is restored on #VMEXIT from the host save area
1536  * (which has been initialized in svm_hardware_enable()).
1537  */
1538  if (likely(tsc_aux_uret_slot >= 0) &&
1539  (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1540  kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1541 
1542  svm->guest_state_loaded = true;
1543 }
1544 
1545 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1546 {
1547  to_svm(vcpu)->guest_state_loaded = false;
1548 }
1549 
1550 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1551 {
1552  struct vcpu_svm *svm = to_svm(vcpu);
1553  struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1554 
1555  if (sd->current_vmcb != svm->vmcb) {
1556  sd->current_vmcb = svm->vmcb;
1557 
1558  if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1559  indirect_branch_prediction_barrier();
1560  }
1561  if (kvm_vcpu_apicv_active(vcpu))
1562  avic_vcpu_load(vcpu, cpu);
1563 }
1564 
1565 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1566 {
1567  if (kvm_vcpu_apicv_active(vcpu))
1568  avic_vcpu_put(vcpu);
1569 
1571 
1572  ++vcpu->stat.host_state_reload;
1573 }
1574 
1575 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1576 {
1577  struct vcpu_svm *svm = to_svm(vcpu);
1578  unsigned long rflags = svm->vmcb->save.rflags;
1579 
1580  if (svm->nmi_singlestep) {
1581  /* Hide our flags if they were not set by the guest */
1582  if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1583  rflags &= ~X86_EFLAGS_TF;
1584  if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1585  rflags &= ~X86_EFLAGS_RF;
1586  }
1587  return rflags;
1588 }
1589 
1590 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1591 {
1592  if (to_svm(vcpu)->nmi_singlestep)
1593  rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1594 
1595  /*
1596  * Any change of EFLAGS.VM is accompanied by a reload of SS
1597  * (caused by either a task switch or an inter-privilege IRET),
1598  * so we do not need to update the CPL here.
1599  */
1600  to_svm(vcpu)->vmcb->save.rflags = rflags;
1601 }
1602 
1603 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1604 {
1605  struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1606 
1607  return sev_es_guest(vcpu->kvm)
1608  ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1609  : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1610 }
1611 
1612 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1613 {
1614  kvm_register_mark_available(vcpu, reg);
1615 
1616  switch (reg) {
1617  case VCPU_EXREG_PDPTR:
1618  /*
1619  * When !npt_enabled, mmu->pdptrs[] is already available since
1620  * it is always updated per SDM when moving to CRs.
1621  */
1622  if (npt_enabled)
1623  load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1624  break;
1625  default:
1626  KVM_BUG_ON(1, vcpu->kvm);
1627  }
1628 }
1629 
1630 static void svm_set_vintr(struct vcpu_svm *svm)
1631 {
1632  struct vmcb_control_area *control;
1633 
1634  /*
1635  * The following fields are ignored when AVIC is enabled
1636  */
1637  WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1638 
1639  svm_set_intercept(svm, INTERCEPT_VINTR);
1640 
1641  /*
1642  * Recalculating intercepts may have cleared the VINTR intercept. If
1643  * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1644  * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1645  * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1646  * interrupts will never be unblocked while L2 is running.
1647  */
1648  if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1649  return;
1650 
1651  /*
1652  * This is just a dummy VINTR to actually cause a vmexit to happen.
1653  * Actual injection of virtual interrupts happens through EVENTINJ.
1654  */
1655  control = &svm->vmcb->control;
1656  control->int_vector = 0x0;
1657  control->int_ctl &= ~V_INTR_PRIO_MASK;
1658  control->int_ctl |= V_IRQ_MASK |
1659  ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1661 }
1662 
1663 static void svm_clear_vintr(struct vcpu_svm *svm)
1664 {
1665  svm_clr_intercept(svm, INTERCEPT_VINTR);
1666 
1667  /* Drop int_ctl fields related to VINTR injection. */
1668  svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1669  if (is_guest_mode(&svm->vcpu)) {
1670  svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1671 
1672  WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1673  (svm->nested.ctl.int_ctl & V_TPR_MASK));
1674 
1675  svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1676  V_IRQ_INJECTION_BITS_MASK;
1677 
1678  svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1679  }
1680 
1682 }
1683 
1684 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1685 {
1686  struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1687  struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1688 
1689  switch (seg) {
1690  case VCPU_SREG_CS: return &save->cs;
1691  case VCPU_SREG_DS: return &save->ds;
1692  case VCPU_SREG_ES: return &save->es;
1693  case VCPU_SREG_FS: return &save01->fs;
1694  case VCPU_SREG_GS: return &save01->gs;
1695  case VCPU_SREG_SS: return &save->ss;
1696  case VCPU_SREG_TR: return &save01->tr;
1697  case VCPU_SREG_LDTR: return &save01->ldtr;
1698  }
1699  BUG();
1700  return NULL;
1701 }
1702 
1703 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1704 {
1705  struct vmcb_seg *s = svm_seg(vcpu, seg);
1706 
1707  return s->base;
1708 }
1709 
1710 static void svm_get_segment(struct kvm_vcpu *vcpu,
1711  struct kvm_segment *var, int seg)
1712 {
1713  struct vmcb_seg *s = svm_seg(vcpu, seg);
1714 
1715  var->base = s->base;
1716  var->limit = s->limit;
1717  var->selector = s->selector;
1718  var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1719  var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1720  var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1721  var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1722  var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1723  var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1724  var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1725 
1726  /*
1727  * AMD CPUs circa 2014 track the G bit for all segments except CS.
1728  * However, the SVM spec states that the G bit is not observed by the
1729  * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1730  * So let's synthesize a legal G bit for all segments, this helps
1731  * running KVM nested. It also helps cross-vendor migration, because
1732  * Intel's vmentry has a check on the 'G' bit.
1733  */
1734  var->g = s->limit > 0xfffff;
1735 
1736  /*
1737  * AMD's VMCB does not have an explicit unusable field, so emulate it
1738  * for cross vendor migration purposes by "not present"
1739  */
1740  var->unusable = !var->present;
1741 
1742  switch (seg) {
1743  case VCPU_SREG_TR:
1744  /*
1745  * Work around a bug where the busy flag in the tr selector
1746  * isn't exposed
1747  */
1748  var->type |= 0x2;
1749  break;
1750  case VCPU_SREG_DS:
1751  case VCPU_SREG_ES:
1752  case VCPU_SREG_FS:
1753  case VCPU_SREG_GS:
1754  /*
1755  * The accessed bit must always be set in the segment
1756  * descriptor cache, although it can be cleared in the
1757  * descriptor, the cached bit always remains at 1. Since
1758  * Intel has a check on this, set it here to support
1759  * cross-vendor migration.
1760  */
1761  if (!var->unusable)
1762  var->type |= 0x1;
1763  break;
1764  case VCPU_SREG_SS:
1765  /*
1766  * On AMD CPUs sometimes the DB bit in the segment
1767  * descriptor is left as 1, although the whole segment has
1768  * been made unusable. Clear it here to pass an Intel VMX
1769  * entry check when cross vendor migrating.
1770  */
1771  if (var->unusable)
1772  var->db = 0;
1773  /* This is symmetric with svm_set_segment() */
1774  var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1775  break;
1776  }
1777 }
1778 
1779 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1780 {
1781  struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1782 
1783  return save->cpl;
1784 }
1785 
1786 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1787 {
1788  struct kvm_segment cs;
1789 
1790  svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1791  *db = cs.db;
1792  *l = cs.l;
1793 }
1794 
1795 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1796 {
1797  struct vcpu_svm *svm = to_svm(vcpu);
1798 
1799  dt->size = svm->vmcb->save.idtr.limit;
1800  dt->address = svm->vmcb->save.idtr.base;
1801 }
1802 
1803 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1804 {
1805  struct vcpu_svm *svm = to_svm(vcpu);
1806 
1807  svm->vmcb->save.idtr.limit = dt->size;
1808  svm->vmcb->save.idtr.base = dt->address ;
1809  vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1810 }
1811 
1812 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1813 {
1814  struct vcpu_svm *svm = to_svm(vcpu);
1815 
1816  dt->size = svm->vmcb->save.gdtr.limit;
1817  dt->address = svm->vmcb->save.gdtr.base;
1818 }
1819 
1820 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1821 {
1822  struct vcpu_svm *svm = to_svm(vcpu);
1823 
1824  svm->vmcb->save.gdtr.limit = dt->size;
1825  svm->vmcb->save.gdtr.base = dt->address ;
1826  vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1827 }
1828 
1829 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1830 {
1831  struct vcpu_svm *svm = to_svm(vcpu);
1832 
1833  /*
1834  * For guests that don't set guest_state_protected, the cr3 update is
1835  * handled via kvm_mmu_load() while entering the guest. For guests
1836  * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1837  * VMCB save area now, since the save area will become the initial
1838  * contents of the VMSA, and future VMCB save area updates won't be
1839  * seen.
1840  */
1841  if (sev_es_guest(vcpu->kvm)) {
1842  svm->vmcb->save.cr3 = cr3;
1843  vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1844  }
1845 }
1846 
1847 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1848 {
1849  return true;
1850 }
1851 
1852 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1853 {
1854  struct vcpu_svm *svm = to_svm(vcpu);
1855  u64 hcr0 = cr0;
1856  bool old_paging = is_paging(vcpu);
1857 
1858 #ifdef CONFIG_X86_64
1859  if (vcpu->arch.efer & EFER_LME) {
1860  if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1861  vcpu->arch.efer |= EFER_LMA;
1862  if (!vcpu->arch.guest_state_protected)
1863  svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1864  }
1865 
1866  if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1867  vcpu->arch.efer &= ~EFER_LMA;
1868  if (!vcpu->arch.guest_state_protected)
1869  svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1870  }
1871  }
1872 #endif
1873  vcpu->arch.cr0 = cr0;
1874 
1875  if (!npt_enabled) {
1876  hcr0 |= X86_CR0_PG | X86_CR0_WP;
1877  if (old_paging != is_paging(vcpu))
1879  }
1880 
1881  /*
1882  * re-enable caching here because the QEMU bios
1883  * does not do it - this results in some delay at
1884  * reboot
1885  */
1886  if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1887  hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1888 
1889  svm->vmcb->save.cr0 = hcr0;
1890  vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1891 
1892  /*
1893  * SEV-ES guests must always keep the CR intercepts cleared. CR
1894  * tracking is done using the CR write traps.
1895  */
1896  if (sev_es_guest(vcpu->kvm))
1897  return;
1898 
1899  if (hcr0 == cr0) {
1900  /* Selective CR0 write remains on. */
1901  svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1902  svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1903  } else {
1904  svm_set_intercept(svm, INTERCEPT_CR0_READ);
1905  svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1906  }
1907 }
1908 
1909 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1910 {
1911  return true;
1912 }
1913 
1914 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1915 {
1916  unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1917  unsigned long old_cr4 = vcpu->arch.cr4;
1918 
1919  if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1921 
1922  vcpu->arch.cr4 = cr4;
1923  if (!npt_enabled) {
1924  cr4 |= X86_CR4_PAE;
1925 
1926  if (!is_paging(vcpu))
1927  cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1928  }
1929  cr4 |= host_cr4_mce;
1930  to_svm(vcpu)->vmcb->save.cr4 = cr4;
1932 
1933  if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1935 }
1936 
1937 static void svm_set_segment(struct kvm_vcpu *vcpu,
1938  struct kvm_segment *var, int seg)
1939 {
1940  struct vcpu_svm *svm = to_svm(vcpu);
1941  struct vmcb_seg *s = svm_seg(vcpu, seg);
1942 
1943  s->base = var->base;
1944  s->limit = var->limit;
1945  s->selector = var->selector;
1946  s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1947  s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1948  s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1949  s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1950  s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1951  s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1952  s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1953  s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1954 
1955  /*
1956  * This is always accurate, except if SYSRET returned to a segment
1957  * with SS.DPL != 3. Intel does not have this quirk, and always
1958  * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1959  * would entail passing the CPL to userspace and back.
1960  */
1961  if (seg == VCPU_SREG_SS)
1962  /* This is symmetric with svm_get_segment() */
1963  svm->vmcb->save.cpl = (var->dpl & 3);
1964 
1965  vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1966 }
1967 
1968 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1969 {
1970  struct vcpu_svm *svm = to_svm(vcpu);
1971 
1972  clr_exception_intercept(svm, BP_VECTOR);
1973 
1974  if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1975  if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1976  set_exception_intercept(svm, BP_VECTOR);
1977  }
1978 }
1979 
1980 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1981 {
1982  if (sd->next_asid > sd->max_asid) {
1983  ++sd->asid_generation;
1984  sd->next_asid = sd->min_asid;
1985  svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1987  }
1988 
1990  svm->asid = sd->next_asid++;
1991 }
1992 
1993 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1994 {
1995  struct vmcb *vmcb = svm->vmcb;
1996 
1997  if (svm->vcpu.arch.guest_state_protected)
1998  return;
1999 
2000  if (unlikely(value != vmcb->save.dr6)) {
2001  vmcb->save.dr6 = value;
2002  vmcb_mark_dirty(vmcb, VMCB_DR);
2003  }
2004 }
2005 
2006 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2007 {
2008  struct vcpu_svm *svm = to_svm(vcpu);
2009 
2010  if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2011  return;
2012 
2013  get_debugreg(vcpu->arch.db[0], 0);
2014  get_debugreg(vcpu->arch.db[1], 1);
2015  get_debugreg(vcpu->arch.db[2], 2);
2016  get_debugreg(vcpu->arch.db[3], 3);
2017  /*
2018  * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2019  * because db_interception might need it. We can do it before vmentry.
2020  */
2021  vcpu->arch.dr6 = svm->vmcb->save.dr6;
2022  vcpu->arch.dr7 = svm->vmcb->save.dr7;
2023  vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2024  set_dr_intercepts(svm);
2025 }
2026 
2027 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2028 {
2029  struct vcpu_svm *svm = to_svm(vcpu);
2030 
2031  if (vcpu->arch.guest_state_protected)
2032  return;
2033 
2034  svm->vmcb->save.dr7 = value;
2035  vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2036 }
2037 
2038 static int pf_interception(struct kvm_vcpu *vcpu)
2039 {
2040  struct vcpu_svm *svm = to_svm(vcpu);
2041 
2042  u64 fault_address = svm->vmcb->control.exit_info_2;
2043  u64 error_code = svm->vmcb->control.exit_info_1;
2044 
2045  return kvm_handle_page_fault(vcpu, error_code, fault_address,
2046  static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2047  svm->vmcb->control.insn_bytes : NULL,
2048  svm->vmcb->control.insn_len);
2049 }
2050 
2051 static int npf_interception(struct kvm_vcpu *vcpu)
2052 {
2053  struct vcpu_svm *svm = to_svm(vcpu);
2054 
2055  u64 fault_address = svm->vmcb->control.exit_info_2;
2056  u64 error_code = svm->vmcb->control.exit_info_1;
2057 
2058  trace_kvm_page_fault(vcpu, fault_address, error_code);
2059  return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2060  static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2061  svm->vmcb->control.insn_bytes : NULL,
2062  svm->vmcb->control.insn_len);
2063 }
2064 
2065 static int db_interception(struct kvm_vcpu *vcpu)
2066 {
2067  struct kvm_run *kvm_run = vcpu->run;
2068  struct vcpu_svm *svm = to_svm(vcpu);
2069 
2070  if (!(vcpu->guest_debug &
2071  (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2072  !svm->nmi_singlestep) {
2073  u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2074  kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2075  return 1;
2076  }
2077 
2078  if (svm->nmi_singlestep) {
2080  /* Make sure we check for pending NMIs upon entry */
2081  kvm_make_request(KVM_REQ_EVENT, vcpu);
2082  }
2083 
2084  if (vcpu->guest_debug &
2085  (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2086  kvm_run->exit_reason = KVM_EXIT_DEBUG;
2087  kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2088  kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2089  kvm_run->debug.arch.pc =
2090  svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2091  kvm_run->debug.arch.exception = DB_VECTOR;
2092  return 0;
2093  }
2094 
2095  return 1;
2096 }
2097 
2098 static int bp_interception(struct kvm_vcpu *vcpu)
2099 {
2100  struct vcpu_svm *svm = to_svm(vcpu);
2101  struct kvm_run *kvm_run = vcpu->run;
2102 
2103  kvm_run->exit_reason = KVM_EXIT_DEBUG;
2104  kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2105  kvm_run->debug.arch.exception = BP_VECTOR;
2106  return 0;
2107 }
2108 
2109 static int ud_interception(struct kvm_vcpu *vcpu)
2110 {
2111  return handle_ud(vcpu);
2112 }
2113 
2114 static int ac_interception(struct kvm_vcpu *vcpu)
2115 {
2116  kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2117  return 1;
2118 }
2119 
2120 static bool is_erratum_383(void)
2121 {
2122  int err, i;
2123  u64 value;
2124 
2125  if (!erratum_383_found)
2126  return false;
2127 
2128  value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2129  if (err)
2130  return false;
2131 
2132  /* Bit 62 may or may not be set for this mce */
2133  value &= ~(1ULL << 62);
2134 
2135  if (value != 0xb600000000010015ULL)
2136  return false;
2137 
2138  /* Clear MCi_STATUS registers */
2139  for (i = 0; i < 6; ++i)
2140  native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2141 
2142  value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2143  if (!err) {
2144  u32 low, high;
2145 
2146  value &= ~(1ULL << 2);
2147  low = lower_32_bits(value);
2148  high = upper_32_bits(value);
2149 
2150  native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2151  }
2152 
2153  /* Flush tlb to evict multi-match entries */
2154  __flush_tlb_all();
2155 
2156  return true;
2157 }
2158 
2159 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2160 {
2161  if (is_erratum_383()) {
2162  /*
2163  * Erratum 383 triggered. Guest state is corrupt so kill the
2164  * guest.
2165  */
2166  pr_err("Guest triggered AMD Erratum 383\n");
2167 
2168  kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2169 
2170  return;
2171  }
2172 
2173  /*
2174  * On an #MC intercept the MCE handler is not called automatically in
2175  * the host. So do it by hand here.
2176  */
2178 }
2179 
2180 static int mc_interception(struct kvm_vcpu *vcpu)
2181 {
2182  return 1;
2183 }
2184 
2185 static int shutdown_interception(struct kvm_vcpu *vcpu)
2186 {
2187  struct kvm_run *kvm_run = vcpu->run;
2188  struct vcpu_svm *svm = to_svm(vcpu);
2189 
2190 
2191  /*
2192  * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2193  * the VMCB in a known good state. Unfortuately, KVM doesn't have
2194  * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2195  * userspace. At a platform view, INIT is acceptable behavior as
2196  * there exist bare metal platforms that automatically INIT the CPU
2197  * in response to shutdown.
2198  *
2199  * The VM save area for SEV-ES guests has already been encrypted so it
2200  * cannot be reinitialized, i.e. synthesizing INIT is futile.
2201  */
2202  if (!sev_es_guest(vcpu->kvm)) {
2203  clear_page(svm->vmcb);
2204  kvm_vcpu_reset(vcpu, true);
2205  }
2206 
2207  kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2208  return 0;
2209 }
2210 
2211 static int io_interception(struct kvm_vcpu *vcpu)
2212 {
2213  struct vcpu_svm *svm = to_svm(vcpu);
2214  u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2215  int size, in, string;
2216  unsigned port;
2217 
2218  ++vcpu->stat.io_exits;
2219  string = (io_info & SVM_IOIO_STR_MASK) != 0;
2220  in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2221  port = io_info >> 16;
2222  size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2223 
2224  if (string) {
2225  if (sev_es_guest(vcpu->kvm))
2226  return sev_es_string_io(svm, size, port, in);
2227  else
2228  return kvm_emulate_instruction(vcpu, 0);
2229  }
2230 
2231  svm->next_rip = svm->vmcb->control.exit_info_2;
2232 
2233  return kvm_fast_pio(vcpu, size, port, in);
2234 }
2235 
2236 static int nmi_interception(struct kvm_vcpu *vcpu)
2237 {
2238  return 1;
2239 }
2240 
2241 static int smi_interception(struct kvm_vcpu *vcpu)
2242 {
2243  return 1;
2244 }
2245 
2246 static int intr_interception(struct kvm_vcpu *vcpu)
2247 {
2248  ++vcpu->stat.irq_exits;
2249  return 1;
2250 }
2251 
2252 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2253 {
2254  struct vcpu_svm *svm = to_svm(vcpu);
2255  struct vmcb *vmcb12;
2256  struct kvm_host_map map;
2257  int ret;
2258 
2259  if (nested_svm_check_permissions(vcpu))
2260  return 1;
2261 
2262  ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2263  if (ret) {
2264  if (ret == -EINVAL)
2265  kvm_inject_gp(vcpu, 0);
2266  return 1;
2267  }
2268 
2269  vmcb12 = map.hva;
2270 
2271  ret = kvm_skip_emulated_instruction(vcpu);
2272 
2273  if (vmload) {
2274  svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2275  svm->sysenter_eip_hi = 0;
2276  svm->sysenter_esp_hi = 0;
2277  } else {
2278  svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2279  }
2280 
2281  kvm_vcpu_unmap(vcpu, &map, true);
2282 
2283  return ret;
2284 }
2285 
2286 static int vmload_interception(struct kvm_vcpu *vcpu)
2287 {
2288  return vmload_vmsave_interception(vcpu, true);
2289 }
2290 
2291 static int vmsave_interception(struct kvm_vcpu *vcpu)
2292 {
2293  return vmload_vmsave_interception(vcpu, false);
2294 }
2295 
2296 static int vmrun_interception(struct kvm_vcpu *vcpu)
2297 {
2298  if (nested_svm_check_permissions(vcpu))
2299  return 1;
2300 
2301  return nested_svm_vmrun(vcpu);
2302 }
2303 
2304 enum {
2309 };
2310 
2311 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2312 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2313 {
2314  struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2315 
2316  if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2317  return NONE_SVM_INSTR;
2318 
2319  switch (ctxt->modrm) {
2320  case 0xd8: /* VMRUN */
2321  return SVM_INSTR_VMRUN;
2322  case 0xda: /* VMLOAD */
2323  return SVM_INSTR_VMLOAD;
2324  case 0xdb: /* VMSAVE */
2325  return SVM_INSTR_VMSAVE;
2326  default:
2327  break;
2328  }
2329 
2330  return NONE_SVM_INSTR;
2331 }
2332 
2333 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2334 {
2335  const int guest_mode_exit_codes[] = {
2336  [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2337  [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2338  [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2339  };
2340  int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2344  };
2345  struct vcpu_svm *svm = to_svm(vcpu);
2346  int ret;
2347 
2348  if (is_guest_mode(vcpu)) {
2349  /* Returns '1' or -errno on failure, '0' on success. */
2350  ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2351  if (ret)
2352  return ret;
2353  return 1;
2354  }
2355  return svm_instr_handlers[opcode](vcpu);
2356 }
2357 
2358 /*
2359  * #GP handling code. Note that #GP can be triggered under the following two
2360  * cases:
2361  * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2362  * some AMD CPUs when EAX of these instructions are in the reserved memory
2363  * regions (e.g. SMM memory on host).
2364  * 2) VMware backdoor
2365  */
2366 static int gp_interception(struct kvm_vcpu *vcpu)
2367 {
2368  struct vcpu_svm *svm = to_svm(vcpu);
2369  u32 error_code = svm->vmcb->control.exit_info_1;
2370  int opcode;
2371 
2372  /* Both #GP cases have zero error_code */
2373  if (error_code)
2374  goto reinject;
2375 
2376  /* Decode the instruction for usage later */
2378  goto reinject;
2379 
2381 
2382  if (opcode == NONE_SVM_INSTR) {
2384  goto reinject;
2385 
2386  /*
2387  * VMware backdoor emulation on #GP interception only handles
2388  * IN{S}, OUT{S}, and RDPMC.
2389  */
2390  if (!is_guest_mode(vcpu))
2392  EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2393  } else {
2394  /* All SVM instructions expect page aligned RAX */
2395  if (svm->vmcb->save.rax & ~PAGE_MASK)
2396  goto reinject;
2397 
2398  return emulate_svm_instr(vcpu, opcode);
2399  }
2400 
2401 reinject:
2402  kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2403  return 1;
2404 }
2405 
2406 void svm_set_gif(struct vcpu_svm *svm, bool value)
2407 {
2408  if (value) {
2409  /*
2410  * If VGIF is enabled, the STGI intercept is only added to
2411  * detect the opening of the SMI/NMI window; remove it now.
2412  * Likewise, clear the VINTR intercept, we will set it
2413  * again while processing KVM_REQ_EVENT if needed.
2414  */
2415  if (vgif)
2416  svm_clr_intercept(svm, INTERCEPT_STGI);
2417  if (svm_is_intercept(svm, INTERCEPT_VINTR))
2418  svm_clear_vintr(svm);
2419 
2420  enable_gif(svm);
2421  if (svm->vcpu.arch.smi_pending ||
2422  svm->vcpu.arch.nmi_pending ||
2425  kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2426  } else {
2427  disable_gif(svm);
2428 
2429  /*
2430  * After a CLGI no interrupts should come. But if vGIF is
2431  * in use, we still rely on the VINTR intercept (rather than
2432  * STGI) to detect an open interrupt window.
2433  */
2434  if (!vgif)
2435  svm_clear_vintr(svm);
2436  }
2437 }
2438 
2439 static int stgi_interception(struct kvm_vcpu *vcpu)
2440 {
2441  int ret;
2442 
2444  return 1;
2445 
2447  svm_set_gif(to_svm(vcpu), true);
2448  return ret;
2449 }
2450 
2451 static int clgi_interception(struct kvm_vcpu *vcpu)
2452 {
2453  int ret;
2454 
2456  return 1;
2457 
2459  svm_set_gif(to_svm(vcpu), false);
2460  return ret;
2461 }
2462 
2463 static int invlpga_interception(struct kvm_vcpu *vcpu)
2464 {
2465  gva_t gva = kvm_rax_read(vcpu);
2466  u32 asid = kvm_rcx_read(vcpu);
2467 
2468  /* FIXME: Handle an address size prefix. */
2469  if (!is_long_mode(vcpu))
2470  gva = (u32)gva;
2471 
2472  trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2473 
2474  /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2475  kvm_mmu_invlpg(vcpu, gva);
2476 
2478 }
2479 
2480 static int skinit_interception(struct kvm_vcpu *vcpu)
2481 {
2482  trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2483 
2484  kvm_queue_exception(vcpu, UD_VECTOR);
2485  return 1;
2486 }
2487 
2488 static int task_switch_interception(struct kvm_vcpu *vcpu)
2489 {
2490  struct vcpu_svm *svm = to_svm(vcpu);
2491  u16 tss_selector;
2492  int reason;
2493  int int_type = svm->vmcb->control.exit_int_info &
2494  SVM_EXITINTINFO_TYPE_MASK;
2495  int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2496  uint32_t type =
2497  svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2498  uint32_t idt_v =
2499  svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2500  bool has_error_code = false;
2501  u32 error_code = 0;
2502 
2503  tss_selector = (u16)svm->vmcb->control.exit_info_1;
2504 
2505  if (svm->vmcb->control.exit_info_2 &
2506  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2507  reason = TASK_SWITCH_IRET;
2508  else if (svm->vmcb->control.exit_info_2 &
2509  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2510  reason = TASK_SWITCH_JMP;
2511  else if (idt_v)
2512  reason = TASK_SWITCH_GATE;
2513  else
2514  reason = TASK_SWITCH_CALL;
2515 
2516  if (reason == TASK_SWITCH_GATE) {
2517  switch (type) {
2518  case SVM_EXITINTINFO_TYPE_NMI:
2519  vcpu->arch.nmi_injected = false;
2520  break;
2521  case SVM_EXITINTINFO_TYPE_EXEPT:
2522  if (svm->vmcb->control.exit_info_2 &
2523  (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2524  has_error_code = true;
2525  error_code =
2526  (u32)svm->vmcb->control.exit_info_2;
2527  }
2529  break;
2530  case SVM_EXITINTINFO_TYPE_INTR:
2531  case SVM_EXITINTINFO_TYPE_SOFT:
2533  break;
2534  default:
2535  break;
2536  }
2537  }
2538 
2539  if (reason != TASK_SWITCH_GATE ||
2540  int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2541  (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2542  (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2544  return 0;
2545  }
2546 
2547  if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2548  int_vec = -1;
2549 
2550  return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2551  has_error_code, error_code);
2552 }
2553 
2554 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2555 {
2556  if (!sev_es_guest(svm->vcpu.kvm))
2557  svm_clr_intercept(svm, INTERCEPT_IRET);
2558 }
2559 
2560 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2561 {
2562  if (!sev_es_guest(svm->vcpu.kvm))
2563  svm_set_intercept(svm, INTERCEPT_IRET);
2564 }
2565 
2566 static int iret_interception(struct kvm_vcpu *vcpu)
2567 {
2568  struct vcpu_svm *svm = to_svm(vcpu);
2569 
2570  WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2571 
2572  ++vcpu->stat.nmi_window_exits;
2573  svm->awaiting_iret_completion = true;
2574 
2576  svm->nmi_iret_rip = kvm_rip_read(vcpu);
2577 
2578  kvm_make_request(KVM_REQ_EVENT, vcpu);
2579  return 1;
2580 }
2581 
2582 static int invlpg_interception(struct kvm_vcpu *vcpu)
2583 {
2584  if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2585  return kvm_emulate_instruction(vcpu, 0);
2586 
2587  kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2589 }
2590 
2591 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2592 {
2593  return kvm_emulate_instruction(vcpu, 0);
2594 }
2595 
2596 static int rsm_interception(struct kvm_vcpu *vcpu)
2597 {
2599 }
2600 
2601 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2602  unsigned long val)
2603 {
2604  struct vcpu_svm *svm = to_svm(vcpu);
2605  unsigned long cr0 = vcpu->arch.cr0;
2606  bool ret = false;
2607 
2608  if (!is_guest_mode(vcpu) ||
2609  (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2610  return false;
2611 
2612  cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2613  val &= ~SVM_CR0_SELECTIVE_MASK;
2614 
2615  if (cr0 ^ val) {
2616  svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2617  ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2618  }
2619 
2620  return ret;
2621 }
2622 
2623 #define CR_VALID (1ULL << 63)
2624 
2625 static int cr_interception(struct kvm_vcpu *vcpu)
2626 {
2627  struct vcpu_svm *svm = to_svm(vcpu);
2628  int reg, cr;
2629  unsigned long val;
2630  int err;
2631 
2632  if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2633  return emulate_on_interception(vcpu);
2634 
2635  if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2636  return emulate_on_interception(vcpu);
2637 
2638  reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2639  if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2640  cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2641  else
2642  cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2643 
2644  err = 0;
2645  if (cr >= 16) { /* mov to cr */
2646  cr -= 16;
2647  val = kvm_register_read(vcpu, reg);
2648  trace_kvm_cr_write(cr, val);
2649  switch (cr) {
2650  case 0:
2652  err = kvm_set_cr0(vcpu, val);
2653  else
2654  return 1;
2655 
2656  break;
2657  case 3:
2658  err = kvm_set_cr3(vcpu, val);
2659  break;
2660  case 4:
2661  err = kvm_set_cr4(vcpu, val);
2662  break;
2663  case 8:
2664  err = kvm_set_cr8(vcpu, val);
2665  break;
2666  default:
2667  WARN(1, "unhandled write to CR%d", cr);
2668  kvm_queue_exception(vcpu, UD_VECTOR);
2669  return 1;
2670  }
2671  } else { /* mov from cr */
2672  switch (cr) {
2673  case 0:
2674  val = kvm_read_cr0(vcpu);
2675  break;
2676  case 2:
2677  val = vcpu->arch.cr2;
2678  break;
2679  case 3:
2680  val = kvm_read_cr3(vcpu);
2681  break;
2682  case 4:
2683  val = kvm_read_cr4(vcpu);
2684  break;
2685  case 8:
2686  val = kvm_get_cr8(vcpu);
2687  break;
2688  default:
2689  WARN(1, "unhandled read from CR%d", cr);
2690  kvm_queue_exception(vcpu, UD_VECTOR);
2691  return 1;
2692  }
2693  kvm_register_write(vcpu, reg, val);
2694  trace_kvm_cr_read(cr, val);
2695  }
2696  return kvm_complete_insn_gp(vcpu, err);
2697 }
2698 
2699 static int cr_trap(struct kvm_vcpu *vcpu)
2700 {
2701  struct vcpu_svm *svm = to_svm(vcpu);
2702  unsigned long old_value, new_value;
2703  unsigned int cr;
2704  int ret = 0;
2705 
2706  new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2707 
2708  cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2709  switch (cr) {
2710  case 0:
2711  old_value = kvm_read_cr0(vcpu);
2712  svm_set_cr0(vcpu, new_value);
2713 
2714  kvm_post_set_cr0(vcpu, old_value, new_value);
2715  break;
2716  case 4:
2717  old_value = kvm_read_cr4(vcpu);
2718  svm_set_cr4(vcpu, new_value);
2719 
2720  kvm_post_set_cr4(vcpu, old_value, new_value);
2721  break;
2722  case 8:
2723  ret = kvm_set_cr8(vcpu, new_value);
2724  break;
2725  default:
2726  WARN(1, "unhandled CR%d write trap", cr);
2727  kvm_queue_exception(vcpu, UD_VECTOR);
2728  return 1;
2729  }
2730 
2731  return kvm_complete_insn_gp(vcpu, ret);
2732 }
2733 
2734 static int dr_interception(struct kvm_vcpu *vcpu)
2735 {
2736  struct vcpu_svm *svm = to_svm(vcpu);
2737  int reg, dr;
2738  unsigned long val;
2739  int err = 0;
2740 
2741  /*
2742  * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2743  * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2744  */
2745  if (sev_es_guest(vcpu->kvm))
2746  return 1;
2747 
2748  if (vcpu->guest_debug == 0) {
2749  /*
2750  * No more DR vmexits; force a reload of the debug registers
2751  * and reenter on this instruction. The next vmexit will
2752  * retrieve the full state of the debug registers.
2753  */
2754  clr_dr_intercepts(svm);
2755  vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2756  return 1;
2757  }
2758 
2759  if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2760  return emulate_on_interception(vcpu);
2761 
2762  reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2763  dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2764  if (dr >= 16) { /* mov to DRn */
2765  dr -= 16;
2766  val = kvm_register_read(vcpu, reg);
2767  err = kvm_set_dr(vcpu, dr, val);
2768  } else {
2769  kvm_get_dr(vcpu, dr, &val);
2770  kvm_register_write(vcpu, reg, val);
2771  }
2772 
2773  return kvm_complete_insn_gp(vcpu, err);
2774 }
2775 
2776 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2777 {
2778  int r;
2779 
2780  u8 cr8_prev = kvm_get_cr8(vcpu);
2781  /* instruction emulation calls kvm_set_cr8() */
2782  r = cr_interception(vcpu);
2783  if (lapic_in_kernel(vcpu))
2784  return r;
2785  if (cr8_prev <= kvm_get_cr8(vcpu))
2786  return r;
2787  vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2788  return 0;
2789 }
2790 
2791 static int efer_trap(struct kvm_vcpu *vcpu)
2792 {
2793  struct msr_data msr_info;
2794  int ret;
2795 
2796  /*
2797  * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2798  * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2799  * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2800  * the guest doesn't have X86_FEATURE_SVM.
2801  */
2802  msr_info.host_initiated = false;
2803  msr_info.index = MSR_EFER;
2804  msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2805  ret = kvm_set_msr_common(vcpu, &msr_info);
2806 
2807  return kvm_complete_insn_gp(vcpu, ret);
2808 }
2809 
2810 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2811 {
2812  msr->data = 0;
2813 
2814  switch (msr->index) {
2815  case MSR_AMD64_DE_CFG:
2816  if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2817  msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2818  break;
2819  default:
2820  return KVM_MSR_RET_INVALID;
2821  }
2822 
2823  return 0;
2824 }
2825 
2826 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2827 {
2828  struct vcpu_svm *svm = to_svm(vcpu);
2829 
2830  switch (msr_info->index) {
2831  case MSR_AMD64_TSC_RATIO:
2832  if (!msr_info->host_initiated &&
2833  !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2834  return 1;
2835  msr_info->data = svm->tsc_ratio_msr;
2836  break;
2837  case MSR_STAR:
2838  msr_info->data = svm->vmcb01.ptr->save.star;
2839  break;
2840 #ifdef CONFIG_X86_64
2841  case MSR_LSTAR:
2842  msr_info->data = svm->vmcb01.ptr->save.lstar;
2843  break;
2844  case MSR_CSTAR:
2845  msr_info->data = svm->vmcb01.ptr->save.cstar;
2846  break;
2847  case MSR_KERNEL_GS_BASE:
2848  msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2849  break;
2850  case MSR_SYSCALL_MASK:
2851  msr_info->data = svm->vmcb01.ptr->save.sfmask;
2852  break;
2853 #endif
2854  case MSR_IA32_SYSENTER_CS:
2855  msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2856  break;
2857  case MSR_IA32_SYSENTER_EIP:
2858  msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2860  msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2861  break;
2862  case MSR_IA32_SYSENTER_ESP:
2863  msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2865  msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2866  break;
2867  case MSR_TSC_AUX:
2868  msr_info->data = svm->tsc_aux;
2869  break;
2870  case MSR_IA32_DEBUGCTLMSR:
2871  msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2872  break;
2873  case MSR_IA32_LASTBRANCHFROMIP:
2874  msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2875  break;
2876  case MSR_IA32_LASTBRANCHTOIP:
2877  msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2878  break;
2879  case MSR_IA32_LASTINTFROMIP:
2880  msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2881  break;
2882  case MSR_IA32_LASTINTTOIP:
2883  msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2884  break;
2885  case MSR_VM_HSAVE_PA:
2886  msr_info->data = svm->nested.hsave_msr;
2887  break;
2888  case MSR_VM_CR:
2889  msr_info->data = svm->nested.vm_cr_msr;
2890  break;
2891  case MSR_IA32_SPEC_CTRL:
2892  if (!msr_info->host_initiated &&
2894  return 1;
2895 
2896  if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2897  msr_info->data = svm->vmcb->save.spec_ctrl;
2898  else
2899  msr_info->data = svm->spec_ctrl;
2900  break;
2901  case MSR_AMD64_VIRT_SPEC_CTRL:
2902  if (!msr_info->host_initiated &&
2903  !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2904  return 1;
2905 
2906  msr_info->data = svm->virt_spec_ctrl;
2907  break;
2908  case MSR_F15H_IC_CFG: {
2909 
2910  int family, model;
2911 
2912  family = guest_cpuid_family(vcpu);
2913  model = guest_cpuid_model(vcpu);
2914 
2915  if (family < 0 || model < 0)
2916  return kvm_get_msr_common(vcpu, msr_info);
2917 
2918  msr_info->data = 0;
2919 
2920  if (family == 0x15 &&
2921  (model >= 0x2 && model < 0x20))
2922  msr_info->data = 0x1E;
2923  }
2924  break;
2925  case MSR_AMD64_DE_CFG:
2926  msr_info->data = svm->msr_decfg;
2927  break;
2928  default:
2929  return kvm_get_msr_common(vcpu, msr_info);
2930  }
2931  return 0;
2932 }
2933 
2934 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2935 {
2936  struct vcpu_svm *svm = to_svm(vcpu);
2937  if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2938  return kvm_complete_insn_gp(vcpu, err);
2939 
2940  ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2941  ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2942  X86_TRAP_GP |
2943  SVM_EVTINJ_TYPE_EXEPT |
2944  SVM_EVTINJ_VALID);
2945  return 1;
2946 }
2947 
2948 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2949 {
2950  struct vcpu_svm *svm = to_svm(vcpu);
2951  int svm_dis, chg_mask;
2952 
2953  if (data & ~SVM_VM_CR_VALID_MASK)
2954  return 1;
2955 
2956  chg_mask = SVM_VM_CR_VALID_MASK;
2957 
2958  if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2959  chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2960 
2961  svm->nested.vm_cr_msr &= ~chg_mask;
2962  svm->nested.vm_cr_msr |= (data & chg_mask);
2963 
2964  svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2965 
2966  /* check for svm_disable while efer.svme is set */
2967  if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2968  return 1;
2969 
2970  return 0;
2971 }
2972 
2973 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2974 {
2975  struct vcpu_svm *svm = to_svm(vcpu);
2976  int ret = 0;
2977 
2978  u32 ecx = msr->index;
2979  u64 data = msr->data;
2980  switch (ecx) {
2981  case MSR_AMD64_TSC_RATIO:
2982 
2983  if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
2984 
2985  if (!msr->host_initiated)
2986  return 1;
2987  /*
2988  * In case TSC scaling is not enabled, always
2989  * leave this MSR at the default value.
2990  *
2991  * Due to bug in qemu 6.2.0, it would try to set
2992  * this msr to 0 if tsc scaling is not enabled.
2993  * Ignore this value as well.
2994  */
2995  if (data != 0 && data != svm->tsc_ratio_msr)
2996  return 1;
2997  break;
2998  }
2999 
3000  if (data & SVM_TSC_RATIO_RSVD)
3001  return 1;
3002 
3003  svm->tsc_ratio_msr = data;
3004 
3005  if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3008 
3009  break;
3010  case MSR_IA32_CR_PAT:
3011  ret = kvm_set_msr_common(vcpu, msr);
3012  if (ret)
3013  break;
3014 
3015  svm->vmcb01.ptr->save.g_pat = data;
3016  if (is_guest_mode(vcpu))
3018  vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3019  break;
3020  case MSR_IA32_SPEC_CTRL:
3021  if (!msr->host_initiated &&
3023  return 1;
3024 
3025  if (kvm_spec_ctrl_test_value(data))
3026  return 1;
3027 
3028  if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3029  svm->vmcb->save.spec_ctrl = data;
3030  else
3031  svm->spec_ctrl = data;
3032  if (!data)
3033  break;
3034 
3035  /*
3036  * For non-nested:
3037  * When it's written (to non-zero) for the first time, pass
3038  * it through.
3039  *
3040  * For nested:
3041  * The handling of the MSR bitmap for L2 guests is done in
3042  * nested_svm_vmrun_msrpm.
3043  * We update the L1 MSR bit as well since it will end up
3044  * touching the MSR anyway now.
3045  */
3046  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3047  break;
3048  case MSR_AMD64_VIRT_SPEC_CTRL:
3049  if (!msr->host_initiated &&
3050  !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3051  return 1;
3052 
3053  if (data & ~SPEC_CTRL_SSBD)
3054  return 1;
3055 
3056  svm->virt_spec_ctrl = data;
3057  break;
3058  case MSR_STAR:
3059  svm->vmcb01.ptr->save.star = data;
3060  break;
3061 #ifdef CONFIG_X86_64
3062  case MSR_LSTAR:
3063  svm->vmcb01.ptr->save.lstar = data;
3064  break;
3065  case MSR_CSTAR:
3066  svm->vmcb01.ptr->save.cstar = data;
3067  break;
3068  case MSR_KERNEL_GS_BASE:
3069  svm->vmcb01.ptr->save.kernel_gs_base = data;
3070  break;
3071  case MSR_SYSCALL_MASK:
3072  svm->vmcb01.ptr->save.sfmask = data;
3073  break;
3074 #endif
3075  case MSR_IA32_SYSENTER_CS:
3076  svm->vmcb01.ptr->save.sysenter_cs = data;
3077  break;
3078  case MSR_IA32_SYSENTER_EIP:
3079  svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3080  /*
3081  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3082  * when we spoof an Intel vendor ID (for cross vendor migration).
3083  * In this case we use this intercept to track the high
3084  * 32 bit part of these msrs to support Intel's
3085  * implementation of SYSENTER/SYSEXIT.
3086  */
3087  svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3088  break;
3089  case MSR_IA32_SYSENTER_ESP:
3090  svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3091  svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3092  break;
3093  case MSR_TSC_AUX:
3094  /*
3095  * TSC_AUX is always virtualized for SEV-ES guests when the
3096  * feature is available. The user return MSR support is not
3097  * required in this case because TSC_AUX is restored on #VMEXIT
3098  * from the host save area (which has been initialized in
3099  * svm_hardware_enable()).
3100  */
3101  if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3102  break;
3103 
3104  /*
3105  * TSC_AUX is usually changed only during boot and never read
3106  * directly. Intercept TSC_AUX instead of exposing it to the
3107  * guest via direct_access_msrs, and switch it via user return.
3108  */
3109  preempt_disable();
3110  ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3111  preempt_enable();
3112  if (ret)
3113  break;
3114 
3115  svm->tsc_aux = data;
3116  break;
3117  case MSR_IA32_DEBUGCTLMSR:
3118  if (!lbrv) {
3119  kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3120  break;
3121  }
3122  if (data & DEBUGCTL_RESERVED_BITS)
3123  return 1;
3124 
3125  svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3127  break;
3128  case MSR_VM_HSAVE_PA:
3129  /*
3130  * Old kernels did not validate the value written to
3131  * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3132  * value to allow live migrating buggy or malicious guests
3133  * originating from those kernels.
3134  */
3135  if (!msr->host_initiated && !page_address_valid(vcpu, data))
3136  return 1;
3137 
3138  svm->nested.hsave_msr = data & PAGE_MASK;
3139  break;
3140  case MSR_VM_CR:
3141  return svm_set_vm_cr(vcpu, data);
3142  case MSR_VM_IGNNE:
3143  kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3144  break;
3145  case MSR_AMD64_DE_CFG: {
3146  struct kvm_msr_entry msr_entry;
3147 
3148  msr_entry.index = msr->index;
3149  if (svm_get_msr_feature(&msr_entry))
3150  return 1;
3151 
3152  /* Check the supported bits */
3153  if (data & ~msr_entry.data)
3154  return 1;
3155 
3156  /* Don't allow the guest to change a bit, #GP */
3157  if (!msr->host_initiated && (data ^ msr_entry.data))
3158  return 1;
3159 
3160  svm->msr_decfg = data;
3161  break;
3162  }
3163  default:
3164  return kvm_set_msr_common(vcpu, msr);
3165  }
3166  return ret;
3167 }
3168 
3169 static int msr_interception(struct kvm_vcpu *vcpu)
3170 {
3171  if (to_svm(vcpu)->vmcb->control.exit_info_1)
3172  return kvm_emulate_wrmsr(vcpu);
3173  else
3174  return kvm_emulate_rdmsr(vcpu);
3175 }
3176 
3177 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3178 {
3179  kvm_make_request(KVM_REQ_EVENT, vcpu);
3180  svm_clear_vintr(to_svm(vcpu));
3181 
3182  /*
3183  * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3184  * In this case AVIC was temporarily disabled for
3185  * requesting the IRQ window and we have to re-enable it.
3186  *
3187  * If running nested, still remove the VM wide AVIC inhibit to
3188  * support case in which the interrupt window was requested when the
3189  * vCPU was not running nested.
3190 
3191  * All vCPUs which run still run nested, will remain to have their
3192  * AVIC still inhibited due to per-cpu AVIC inhibition.
3193  */
3194  kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3195 
3196  ++vcpu->stat.irq_window_exits;
3197  return 1;
3198 }
3199 
3200 static int pause_interception(struct kvm_vcpu *vcpu)
3201 {
3202  bool in_kernel;
3203  /*
3204  * CPL is not made available for an SEV-ES guest, therefore
3205  * vcpu->arch.preempted_in_kernel can never be true. Just
3206  * set in_kernel to false as well.
3207  */
3208  in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3209 
3210  grow_ple_window(vcpu);
3211 
3212  kvm_vcpu_on_spin(vcpu, in_kernel);
3213  return kvm_skip_emulated_instruction(vcpu);
3214 }
3215 
3216 static int invpcid_interception(struct kvm_vcpu *vcpu)
3217 {
3218  struct vcpu_svm *svm = to_svm(vcpu);
3219  unsigned long type;
3220  gva_t gva;
3221 
3222  if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3223  kvm_queue_exception(vcpu, UD_VECTOR);
3224  return 1;
3225  }
3226 
3227  /*
3228  * For an INVPCID intercept:
3229  * EXITINFO1 provides the linear address of the memory operand.
3230  * EXITINFO2 provides the contents of the register operand.
3231  */
3232  type = svm->vmcb->control.exit_info_2;
3233  gva = svm->vmcb->control.exit_info_1;
3234 
3235  return kvm_handle_invpcid(vcpu, type, gva);
3236 }
3237 
3238 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3239  [SVM_EXIT_READ_CR0] = cr_interception,
3240  [SVM_EXIT_READ_CR3] = cr_interception,
3241  [SVM_EXIT_READ_CR4] = cr_interception,
3242  [SVM_EXIT_READ_CR8] = cr_interception,
3243  [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3244  [SVM_EXIT_WRITE_CR0] = cr_interception,
3245  [SVM_EXIT_WRITE_CR3] = cr_interception,
3246  [SVM_EXIT_WRITE_CR4] = cr_interception,
3247  [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3248  [SVM_EXIT_READ_DR0] = dr_interception,
3249  [SVM_EXIT_READ_DR1] = dr_interception,
3250  [SVM_EXIT_READ_DR2] = dr_interception,
3251  [SVM_EXIT_READ_DR3] = dr_interception,
3252  [SVM_EXIT_READ_DR4] = dr_interception,
3253  [SVM_EXIT_READ_DR5] = dr_interception,
3254  [SVM_EXIT_READ_DR6] = dr_interception,
3255  [SVM_EXIT_READ_DR7] = dr_interception,
3256  [SVM_EXIT_WRITE_DR0] = dr_interception,
3257  [SVM_EXIT_WRITE_DR1] = dr_interception,
3258  [SVM_EXIT_WRITE_DR2] = dr_interception,
3259  [SVM_EXIT_WRITE_DR3] = dr_interception,
3260  [SVM_EXIT_WRITE_DR4] = dr_interception,
3261  [SVM_EXIT_WRITE_DR5] = dr_interception,
3262  [SVM_EXIT_WRITE_DR6] = dr_interception,
3263  [SVM_EXIT_WRITE_DR7] = dr_interception,
3264  [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3265  [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3266  [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3267  [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3268  [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3269  [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3270  [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3271  [SVM_EXIT_INTR] = intr_interception,
3272  [SVM_EXIT_NMI] = nmi_interception,
3273  [SVM_EXIT_SMI] = smi_interception,
3274  [SVM_EXIT_VINTR] = interrupt_window_interception,
3275  [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3276  [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3277  [SVM_EXIT_IRET] = iret_interception,
3278  [SVM_EXIT_INVD] = kvm_emulate_invd,
3279  [SVM_EXIT_PAUSE] = pause_interception,
3280  [SVM_EXIT_HLT] = kvm_emulate_halt,
3281  [SVM_EXIT_INVLPG] = invlpg_interception,
3282  [SVM_EXIT_INVLPGA] = invlpga_interception,
3283  [SVM_EXIT_IOIO] = io_interception,
3284  [SVM_EXIT_MSR] = msr_interception,
3285  [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3286  [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3287  [SVM_EXIT_VMRUN] = vmrun_interception,
3288  [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3289  [SVM_EXIT_VMLOAD] = vmload_interception,
3290  [SVM_EXIT_VMSAVE] = vmsave_interception,
3291  [SVM_EXIT_STGI] = stgi_interception,
3292  [SVM_EXIT_CLGI] = clgi_interception,
3293  [SVM_EXIT_SKINIT] = skinit_interception,
3294  [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3295  [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3296  [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3297  [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3298  [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3299  [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3300  [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3301  [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3302  [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3303  [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3304  [SVM_EXIT_INVPCID] = invpcid_interception,
3305  [SVM_EXIT_NPF] = npf_interception,
3306  [SVM_EXIT_RSM] = rsm_interception,
3307  [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3308  [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3309  [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3310 };
3311 
3312 static void dump_vmcb(struct kvm_vcpu *vcpu)
3313 {
3314  struct vcpu_svm *svm = to_svm(vcpu);
3315  struct vmcb_control_area *control = &svm->vmcb->control;
3316  struct vmcb_save_area *save = &svm->vmcb->save;
3317  struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3318 
3319  if (!dump_invalid_vmcb) {
3320  pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3321  return;
3322  }
3323 
3324  pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3325  svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3326  pr_err("VMCB Control Area:\n");
3327  pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3328  pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3329  pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3330  pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3331  pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3332  pr_err("%-20s%08x %08x\n", "intercepts:",
3333  control->intercepts[INTERCEPT_WORD3],
3334  control->intercepts[INTERCEPT_WORD4]);
3335  pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3336  pr_err("%-20s%d\n", "pause filter threshold:",
3337  control->pause_filter_thresh);
3338  pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3339  pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3340  pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3341  pr_err("%-20s%d\n", "asid:", control->asid);
3342  pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3343  pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3344  pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3345  pr_err("%-20s%08x\n", "int_state:", control->int_state);
3346  pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3347  pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3348  pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3349  pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3350  pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3351  pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3352  pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3353  pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3354  pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3355  pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3356  pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3357  pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3358  pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3359  pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3360  pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3361  pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3362  pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3363  pr_err("VMCB State Save Area:\n");
3364  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365  "es:",
3366  save->es.selector, save->es.attrib,
3367  save->es.limit, save->es.base);
3368  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369  "cs:",
3370  save->cs.selector, save->cs.attrib,
3371  save->cs.limit, save->cs.base);
3372  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373  "ss:",
3374  save->ss.selector, save->ss.attrib,
3375  save->ss.limit, save->ss.base);
3376  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377  "ds:",
3378  save->ds.selector, save->ds.attrib,
3379  save->ds.limit, save->ds.base);
3380  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381  "fs:",
3382  save01->fs.selector, save01->fs.attrib,
3383  save01->fs.limit, save01->fs.base);
3384  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385  "gs:",
3386  save01->gs.selector, save01->gs.attrib,
3387  save01->gs.limit, save01->gs.base);
3388  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389  "gdtr:",
3390  save->gdtr.selector, save->gdtr.attrib,
3391  save->gdtr.limit, save->gdtr.base);
3392  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393  "ldtr:",
3394  save01->ldtr.selector, save01->ldtr.attrib,
3395  save01->ldtr.limit, save01->ldtr.base);
3396  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397  "idtr:",
3398  save->idtr.selector, save->idtr.attrib,
3399  save->idtr.limit, save->idtr.base);
3400  pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3401  "tr:",
3402  save01->tr.selector, save01->tr.attrib,
3403  save01->tr.limit, save01->tr.base);
3404  pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3405  save->vmpl, save->cpl, save->efer);
3406  pr_err("%-15s %016llx %-13s %016llx\n",
3407  "cr0:", save->cr0, "cr2:", save->cr2);
3408  pr_err("%-15s %016llx %-13s %016llx\n",
3409  "cr3:", save->cr3, "cr4:", save->cr4);
3410  pr_err("%-15s %016llx %-13s %016llx\n",
3411  "dr6:", save->dr6, "dr7:", save->dr7);
3412  pr_err("%-15s %016llx %-13s %016llx\n",
3413  "rip:", save->rip, "rflags:", save->rflags);
3414  pr_err("%-15s %016llx %-13s %016llx\n",
3415  "rsp:", save->rsp, "rax:", save->rax);
3416  pr_err("%-15s %016llx %-13s %016llx\n",
3417  "star:", save01->star, "lstar:", save01->lstar);
3418  pr_err("%-15s %016llx %-13s %016llx\n",
3419  "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3420  pr_err("%-15s %016llx %-13s %016llx\n",
3421  "kernel_gs_base:", save01->kernel_gs_base,
3422  "sysenter_cs:", save01->sysenter_cs);
3423  pr_err("%-15s %016llx %-13s %016llx\n",
3424  "sysenter_esp:", save01->sysenter_esp,
3425  "sysenter_eip:", save01->sysenter_eip);
3426  pr_err("%-15s %016llx %-13s %016llx\n",
3427  "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3428  pr_err("%-15s %016llx %-13s %016llx\n",
3429  "br_from:", save->br_from, "br_to:", save->br_to);
3430  pr_err("%-15s %016llx %-13s %016llx\n",
3431  "excp_from:", save->last_excp_from,
3432  "excp_to:", save->last_excp_to);
3433 }
3434 
3435 static bool svm_check_exit_valid(u64 exit_code)
3436 {
3437  return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3438  svm_exit_handlers[exit_code]);
3439 }
3440 
3441 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3442 {
3443  vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3444  dump_vmcb(vcpu);
3445  vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3446  vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3447  vcpu->run->internal.ndata = 2;
3448  vcpu->run->internal.data[0] = exit_code;
3449  vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3450  return 0;
3451 }
3452 
3453 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3454 {
3455  if (!svm_check_exit_valid(exit_code))
3456  return svm_handle_invalid_exit(vcpu, exit_code);
3457 
3458 #ifdef CONFIG_RETPOLINE
3459  if (exit_code == SVM_EXIT_MSR)
3460  return msr_interception(vcpu);
3461  else if (exit_code == SVM_EXIT_VINTR)
3462  return interrupt_window_interception(vcpu);
3463  else if (exit_code == SVM_EXIT_INTR)
3464  return intr_interception(vcpu);
3465  else if (exit_code == SVM_EXIT_HLT)
3466  return kvm_emulate_halt(vcpu);
3467  else if (exit_code == SVM_EXIT_NPF)
3468  return npf_interception(vcpu);
3469 #endif
3470  return svm_exit_handlers[exit_code](vcpu);
3471 }
3472 
3473 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3474  u64 *info1, u64 *info2,
3475  u32 *intr_info, u32 *error_code)
3476 {
3477  struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3478 
3479  *reason = control->exit_code;
3480  *info1 = control->exit_info_1;
3481  *info2 = control->exit_info_2;
3482  *intr_info = control->exit_int_info;
3483  if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3484  (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3485  *error_code = control->exit_int_info_err;
3486  else
3487  *error_code = 0;
3488 }
3489 
3490 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3491 {
3492  struct vcpu_svm *svm = to_svm(vcpu);
3493  struct kvm_run *kvm_run = vcpu->run;
3494  u32 exit_code = svm->vmcb->control.exit_code;
3495 
3496  /* SEV-ES guests must use the CR write traps to track CR registers. */
3497  if (!sev_es_guest(vcpu->kvm)) {
3498  if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3499  vcpu->arch.cr0 = svm->vmcb->save.cr0;
3500  if (npt_enabled)
3501  vcpu->arch.cr3 = svm->vmcb->save.cr3;
3502  }
3503 
3504  if (is_guest_mode(vcpu)) {
3505  int vmexit;
3506 
3507  trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3508 
3509  vmexit = nested_svm_exit_special(svm);
3510 
3511  if (vmexit == NESTED_EXIT_CONTINUE)
3512  vmexit = nested_svm_exit_handled(svm);
3513 
3514  if (vmexit == NESTED_EXIT_DONE)
3515  return 1;
3516  }
3517 
3518  if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3519  kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3520  kvm_run->fail_entry.hardware_entry_failure_reason
3521  = svm->vmcb->control.exit_code;
3522  kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3523  dump_vmcb(vcpu);
3524  return 0;
3525  }
3526 
3527  if (exit_fastpath != EXIT_FASTPATH_NONE)
3528  return 1;
3529 
3530  return svm_invoke_exit_handler(vcpu, exit_code);
3531 }
3532 
3533 static void pre_svm_run(struct kvm_vcpu *vcpu)
3534 {
3535  struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3536  struct vcpu_svm *svm = to_svm(vcpu);
3537 
3538  /*
3539  * If the previous vmrun of the vmcb occurred on a different physical
3540  * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3541  * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3542  */
3543  if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3544  svm->current_vmcb->asid_generation = 0;
3545  vmcb_mark_all_dirty(svm->vmcb);
3546  svm->current_vmcb->cpu = vcpu->cpu;
3547  }
3548 
3549  if (sev_guest(vcpu->kvm))
3550  return pre_sev_run(svm, vcpu->cpu);
3551 
3552  /* FIXME: handle wraparound of asid_generation */
3553  if (svm->current_vmcb->asid_generation != sd->asid_generation)
3554  new_asid(svm, sd);
3555 }
3556 
3557 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3558 {
3559  struct vcpu_svm *svm = to_svm(vcpu);
3560 
3561  svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3562 
3563  if (svm->nmi_l1_to_l2)
3564  return;
3565 
3566  /*
3567  * No need to manually track NMI masking when vNMI is enabled, hardware
3568  * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3569  * case where software directly injects an NMI.
3570  */
3571  if (!is_vnmi_enabled(svm)) {
3572  svm->nmi_masked = true;
3574  }
3575  ++vcpu->stat.nmi_injections;
3576 }
3577 
3578 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3579 {
3580  struct vcpu_svm *svm = to_svm(vcpu);
3581 
3582  if (!is_vnmi_enabled(svm))
3583  return false;
3584 
3585  return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3586 }
3587 
3588 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3589 {
3590  struct vcpu_svm *svm = to_svm(vcpu);
3591 
3592  if (!is_vnmi_enabled(svm))
3593  return false;
3594 
3595  if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3596  return false;
3597 
3598  svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3600 
3601  /*
3602  * Because the pending NMI is serviced by hardware, KVM can't know when
3603  * the NMI is "injected", but for all intents and purposes, passing the
3604  * NMI off to hardware counts as injection.
3605  */
3606  ++vcpu->stat.nmi_injections;
3607 
3608  return true;
3609 }
3610 
3611 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3612 {
3613  struct vcpu_svm *svm = to_svm(vcpu);
3614  u32 type;
3615 
3616  if (vcpu->arch.interrupt.soft) {
3618  return;
3619 
3620  type = SVM_EVTINJ_TYPE_SOFT;
3621  } else {
3622  type = SVM_EVTINJ_TYPE_INTR;
3623  }
3624 
3625  trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3626  vcpu->arch.interrupt.soft, reinjected);
3627  ++vcpu->stat.irq_injections;
3628 
3629  svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3630  SVM_EVTINJ_VALID | type;
3631 }
3632 
3633 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3634  int trig_mode, int vector)
3635 {
3636  /*
3637  * apic->apicv_active must be read after vcpu->mode.
3638  * Pairs with smp_store_release in vcpu_enter_guest.
3639  */
3640  bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3641 
3642  /* Note, this is called iff the local APIC is in-kernel. */
3643  if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3644  /* Process the interrupt via kvm_check_and_inject_events(). */
3645  kvm_make_request(KVM_REQ_EVENT, vcpu);
3647  return;
3648  }
3649 
3650  trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3651  if (in_guest_mode) {
3652  /*
3653  * Signal the doorbell to tell hardware to inject the IRQ. If
3654  * the vCPU exits the guest before the doorbell chimes, hardware
3655  * will automatically process AVIC interrupts at the next VMRUN.
3656  */
3658  } else {
3659  /*
3660  * Wake the vCPU if it was blocking. KVM will then detect the
3661  * pending IRQ when checking if the vCPU has a wake event.
3662  */
3664  }
3665 }
3666 
3667 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3668  int trig_mode, int vector)
3669 {
3670  kvm_lapic_set_irr(vector, apic);
3671 
3672  /*
3673  * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3674  * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3675  * the read of guest_mode. This guarantees that either VMRUN will see
3676  * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3677  * will signal the doorbell if the CPU has already entered the guest.
3678  */
3679  smp_mb__after_atomic();
3680  svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3681 }
3682 
3683 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3684 {
3685  struct vcpu_svm *svm = to_svm(vcpu);
3686 
3687  /*
3688  * SEV-ES guests must always keep the CR intercepts cleared. CR
3689  * tracking is done using the CR write traps.
3690  */
3691  if (sev_es_guest(vcpu->kvm))
3692  return;
3693 
3695  return;
3696 
3697  svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3698 
3699  if (irr == -1)
3700  return;
3701 
3702  if (tpr >= irr)
3703  svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3704 }
3705 
3706 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3707 {
3708  struct vcpu_svm *svm = to_svm(vcpu);
3709 
3710  if (is_vnmi_enabled(svm))
3711  return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3712  else
3713  return svm->nmi_masked;
3714 }
3715 
3716 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3717 {
3718  struct vcpu_svm *svm = to_svm(vcpu);
3719 
3720  if (is_vnmi_enabled(svm)) {
3721  if (masked)
3722  svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3723  else
3724  svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3725 
3726  } else {
3727  svm->nmi_masked = masked;
3728  if (masked)
3730  else
3732  }
3733 }
3734 
3735 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3736 {
3737  struct vcpu_svm *svm = to_svm(vcpu);
3738  struct vmcb *vmcb = svm->vmcb;
3739 
3740  if (!gif_set(svm))
3741  return true;
3742 
3743  if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3744  return false;
3745 
3746  if (svm_get_nmi_mask(vcpu))
3747  return true;
3748 
3749  return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3750 }
3751 
3752 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3753 {
3754  struct vcpu_svm *svm = to_svm(vcpu);
3755  if (svm->nested.nested_run_pending)
3756  return -EBUSY;
3757 
3758  if (svm_nmi_blocked(vcpu))
3759  return 0;
3760 
3761  /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3762  if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3763  return -EBUSY;
3764  return 1;
3765 }
3766 
3767 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3768 {
3769  struct vcpu_svm *svm = to_svm(vcpu);
3770  struct vmcb *vmcb = svm->vmcb;
3771 
3772  if (!gif_set(svm))
3773  return true;
3774 
3775  if (is_guest_mode(vcpu)) {
3776  /* As long as interrupts are being delivered... */
3777  if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3778  ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3779  : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3780  return true;
3781 
3782  /* ... vmexits aren't blocked by the interrupt shadow */
3783  if (nested_exit_on_intr(svm))
3784  return false;
3785  } else {
3786  if (!svm_get_if_flag(vcpu))
3787  return true;
3788  }
3789 
3790  return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3791 }
3792 
3793 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3794 {
3795  struct vcpu_svm *svm = to_svm(vcpu);
3796 
3797  if (svm->nested.nested_run_pending)
3798  return -EBUSY;
3799 
3801  return 0;
3802 
3803  /*
3804  * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3805  * e.g. if the IRQ arrived asynchronously after checking nested events.
3806  */
3807  if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3808  return -EBUSY;
3809 
3810  return 1;
3811 }
3812 
3813 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3814 {
3815  struct vcpu_svm *svm = to_svm(vcpu);
3816 
3817  /*
3818  * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3819  * 1, because that's a separate STGI/VMRUN intercept. The next time we
3820  * get that intercept, this function will be called again though and
3821  * we'll get the vintr intercept. However, if the vGIF feature is
3822  * enabled, the STGI interception will not occur. Enable the irq
3823  * window under the assumption that the hardware will set the GIF.
3824  */
3825  if (vgif || gif_set(svm)) {
3826  /*
3827  * IRQ window is not needed when AVIC is enabled,
3828  * unless we have pending ExtINT since it cannot be injected
3829  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3830  * and fallback to injecting IRQ via V_IRQ.
3831  *
3832  * If running nested, AVIC is already locally inhibited
3833  * on this vCPU, therefore there is no need to request
3834  * the VM wide AVIC inhibition.
3835  */
3836  if (!is_guest_mode(vcpu))
3837  kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3838 
3839  svm_set_vintr(svm);
3840  }
3841 }
3842 
3843 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3844 {
3845  struct vcpu_svm *svm = to_svm(vcpu);
3846 
3847  /*
3848  * KVM should never request an NMI window when vNMI is enabled, as KVM
3849  * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3850  * two NMIs arrive simultaneously, KVM will inject one and set
3851  * V_NMI_PENDING for the other. WARN, but continue with the standard
3852  * single-step approach to try and salvage the pending NMI.
3853  */
3854  WARN_ON_ONCE(is_vnmi_enabled(svm));
3855 
3857  return; /* IRET will cause a vm exit */
3858 
3859  /*
3860  * SEV-ES guests are responsible for signaling when a vCPU is ready to
3861  * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3862  * KVM can't intercept and single-step IRET to detect when NMIs are
3863  * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3864  *
3865  * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3866  * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3867  * supported NAEs in the GHCB protocol.
3868  */
3869  if (sev_es_guest(vcpu->kvm))
3870  return;
3871 
3872  if (!gif_set(svm)) {
3873  if (vgif)
3874  svm_set_intercept(svm, INTERCEPT_STGI);
3875  return; /* STGI will cause a vm exit */
3876  }
3877 
3878  /*
3879  * Something prevents NMI from been injected. Single step over possible
3880  * problem (IRET or exception injection or interrupt shadow)
3881  */
3883  svm->nmi_singlestep = true;
3884  svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3885 }
3886 
3887 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3888 {
3889  struct vcpu_svm *svm = to_svm(vcpu);
3890 
3891  /*
3892  * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3893  * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3894  * entries, and thus is a superset of Hyper-V's fine grained flushing.
3895  */
3897 
3898  /*
3899  * Flush only the current ASID even if the TLB flush was invoked via
3900  * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3901  * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3902  * unconditionally does a TLB flush on both nested VM-Enter and nested
3903  * VM-Exit (via kvm_mmu_reset_context()).
3904  */
3905  if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3906  svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3907  else
3908  svm->current_vmcb->asid_generation--;
3909 }
3910 
3911 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3912 {
3913  hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3914 
3915  /*
3916  * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3917  * flush the NPT mappings via hypercall as flushing the ASID only
3918  * affects virtual to physical mappings, it does not invalidate guest
3919  * physical to host physical mappings.
3920  */
3921  if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3922  hyperv_flush_guest_mapping(root_tdp);
3923 
3925 }
3926 
3927 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3928 {
3929  /*
3930  * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3931  * flushes should be routed to hv_flush_remote_tlbs() without requesting
3932  * a "regular" remote flush. Reaching this point means either there's
3933  * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3934  * which might be fatal to the guest. Yell, but try to recover.
3935  */
3936  if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3937  hv_flush_remote_tlbs(vcpu->kvm);
3938 
3940 }
3941 
3942 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3943 {
3944  struct vcpu_svm *svm = to_svm(vcpu);
3945 
3946  invlpga(gva, svm->vmcb->control.asid);
3947 }
3948 
3949 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3950 {
3951  struct vcpu_svm *svm = to_svm(vcpu);
3952 
3954  return;
3955 
3956  if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3957  int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3958  kvm_set_cr8(vcpu, cr8);
3959  }
3960 }
3961 
3962 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3963 {
3964  struct vcpu_svm *svm = to_svm(vcpu);
3965  u64 cr8;
3966 
3969  return;
3970 
3971  cr8 = kvm_get_cr8(vcpu);
3972  svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3973  svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3974 }
3975 
3976 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3977  int type)
3978 {
3979  bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3980  bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3981  struct vcpu_svm *svm = to_svm(vcpu);
3982 
3983  /*
3984  * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3985  * associated with the original soft exception/interrupt. next_rip is
3986  * cleared on all exits that can occur while vectoring an event, so KVM
3987  * needs to manually set next_rip for re-injection. Unlike the !nrips
3988  * case below, this needs to be done if and only if KVM is re-injecting
3989  * the same event, i.e. if the event is a soft exception/interrupt,
3990  * otherwise next_rip is unused on VMRUN.
3991  */
3992  if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3994  svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3995  /*
3996  * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3997  * injecting the soft exception/interrupt. That advancement needs to
3998  * be unwound if vectoring didn't complete. Note, the new event may
3999  * not be the injected event, e.g. if KVM injected an INTn, the INTn
4000  * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4001  * be the reported vectored event, but RIP still needs to be unwound.
4002  */
4003  else if (!nrips && (is_soft || is_exception) &&
4006 }
4007 
4008 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4009 {
4010  struct vcpu_svm *svm = to_svm(vcpu);
4011  u8 vector;
4012  int type;
4013  u32 exitintinfo = svm->vmcb->control.exit_int_info;
4014  bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4016 
4017  svm->nmi_l1_to_l2 = false;
4018  svm->soft_int_injected = false;
4019 
4020  /*
4021  * If we've made progress since setting awaiting_iret_completion, we've
4022  * executed an IRET and can allow NMI injection.
4023  */
4024  if (svm->awaiting_iret_completion &&
4025  kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4026  svm->awaiting_iret_completion = false;
4027  svm->nmi_masked = false;
4028  kvm_make_request(KVM_REQ_EVENT, vcpu);
4029  }
4030 
4031  vcpu->arch.nmi_injected = false;
4034 
4035  if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4036  return;
4037 
4038  kvm_make_request(KVM_REQ_EVENT, vcpu);
4039 
4040  vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4041  type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4042 
4043  if (soft_int_injected)
4044  svm_complete_soft_interrupt(vcpu, vector, type);
4045 
4046  switch (type) {
4047  case SVM_EXITINTINFO_TYPE_NMI:
4048  vcpu->arch.nmi_injected = true;
4049  svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4050  break;
4051  case SVM_EXITINTINFO_TYPE_EXEPT:
4052  /*
4053  * Never re-inject a #VC exception.
4054  */
4055  if (vector == X86_TRAP_VC)
4056  break;
4057 
4058  if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4059  u32 err = svm->vmcb->control.exit_int_info_err;
4060  kvm_requeue_exception_e(vcpu, vector, err);
4061 
4062  } else
4063  kvm_requeue_exception(vcpu, vector);
4064  break;
4065  case SVM_EXITINTINFO_TYPE_INTR:
4066  kvm_queue_interrupt(vcpu, vector, false);
4067  break;
4068  case SVM_EXITINTINFO_TYPE_SOFT:
4069  kvm_queue_interrupt(vcpu, vector, true);
4070  break;
4071  default:
4072  break;
4073  }
4074 
4075 }
4076 
4077 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4078 {
4079  struct vcpu_svm *svm = to_svm(vcpu);
4080  struct vmcb_control_area *control = &svm->vmcb->control;
4081 
4082  control->exit_int_info = control->event_inj;
4083  control->exit_int_info_err = control->event_inj_err;
4084  control->event_inj = 0;
4086 }
4087 
4088 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4089 {
4090  return 1;
4091 }
4092 
4093 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4094 {
4095  if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4096  to_svm(vcpu)->vmcb->control.exit_info_1)
4097  return handle_fastpath_set_msr_irqoff(vcpu);
4098 
4099  return EXIT_FASTPATH_NONE;
4100 }
4101 
4102 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4103 {
4104  struct vcpu_svm *svm = to_svm(vcpu);
4105 
4106  guest_state_enter_irqoff();
4107 
4108  amd_clear_divider();
4109 
4110  if (sev_es_guest(vcpu->kvm))
4111  __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4112  else
4113  __svm_vcpu_run(svm, spec_ctrl_intercepted);
4114 
4115  guest_state_exit_irqoff();
4116 }
4117 
4118 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4119 {
4120  struct vcpu_svm *svm = to_svm(vcpu);
4121  bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4122 
4123  trace_kvm_entry(vcpu);
4124 
4125  svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4126  svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4127  svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4128 
4129  /*
4130  * Disable singlestep if we're injecting an interrupt/exception.
4131  * We don't want our modified rflags to be pushed on the stack where
4132  * we might not be able to easily reset them if we disabled NMI
4133  * singlestep later.
4134  */
4135  if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4136  /*
4137  * Event injection happens before external interrupts cause a
4138  * vmexit and interrupts are disabled here, so smp_send_reschedule
4139  * is enough to force an immediate vmexit.
4140  */
4142  smp_send_reschedule(vcpu->cpu);
4143  }
4144 
4145  pre_svm_run(vcpu);
4146 
4148 
4149  if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4150  svm->vmcb->control.asid = svm->asid;
4152  }
4153  svm->vmcb->save.cr2 = vcpu->arch.cr2;
4154 
4155  svm_hv_update_vp_id(svm->vmcb, vcpu);
4156 
4157  /*
4158  * Run with all-zero DR6 unless needed, so that we can get the exact cause
4159  * of a #DB.
4160  */
4161  if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4162  svm_set_dr6(svm, vcpu->arch.dr6);
4163  else
4164  svm_set_dr6(svm, DR6_ACTIVE_LOW);
4165 
4166  clgi();
4168 
4170 
4171  /*
4172  * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4173  * it's non-zero. Since vmentry is serialising on affected CPUs, there
4174  * is no need to worry about the conditional branch over the wrmsr
4175  * being speculatively taken.
4176  */
4177  if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4178  x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4179 
4180  svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4181 
4182  if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4183  x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4184 
4185  if (!sev_es_guest(vcpu->kvm)) {
4186  vcpu->arch.cr2 = svm->vmcb->save.cr2;
4187  vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4188  vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4189  vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4190  }
4191  vcpu->arch.regs_dirty = 0;
4192 
4193  if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4195 
4197  stgi();
4198 
4199  /* Any pending NMI will happen here */
4200 
4201  if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4203 
4205 
4206  svm->next_rip = 0;
4207  if (is_guest_mode(vcpu)) {
4209 
4210  /* Track VMRUNs that have made past consistency checking */
4211  if (svm->nested.nested_run_pending &&
4212  svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4213  ++vcpu->stat.nested_run;
4214 
4215  svm->nested.nested_run_pending = 0;
4216  }
4217 
4218  svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4219  vmcb_mark_all_clean(svm->vmcb);
4220 
4221  /* if exit due to PF check for async PF */
4222  if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4223  vcpu->arch.apf.host_apf_flags =
4224  kvm_read_and_reset_apf_flags();
4225 
4226  vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4227 
4228  /*
4229  * We need to handle MC intercepts here before the vcpu has a chance to
4230  * change the physical cpu
4231  */
4232  if (unlikely(svm->vmcb->control.exit_code ==
4233  SVM_EXIT_EXCP_BASE + MC_VECTOR))
4235 
4236  trace_kvm_exit(vcpu, KVM_ISA_SVM);
4237 
4239 
4240  if (is_guest_mode(vcpu))
4241  return EXIT_FASTPATH_NONE;
4242 
4244 }
4245 
4246 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4247  int root_level)
4248 {
4249  struct vcpu_svm *svm = to_svm(vcpu);
4250  unsigned long cr3;
4251 
4252  if (npt_enabled) {
4253  svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4254  vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4255 
4256  hv_track_root_tdp(vcpu, root_hpa);
4257 
4258  cr3 = vcpu->arch.cr3;
4259  } else if (root_level >= PT64_ROOT_4LEVEL) {
4260  cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4261  } else {
4262  /* PCID in the guest should be impossible with a 32-bit MMU. */
4263  WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4264  cr3 = root_hpa;
4265  }
4266 
4267  svm->vmcb->save.cr3 = cr3;
4268  vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4269 }
4270 
4271 static void
4272 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4273 {
4274  /*
4275  * Patch in the VMMCALL instruction:
4276  */
4277  hypercall[0] = 0x0f;
4278  hypercall[1] = 0x01;
4279  hypercall[2] = 0xd9;
4280 }
4281 
4282 /*
4283  * The kvm parameter can be NULL (module initialization, or invocation before
4284  * VM creation). Be sure to check the kvm parameter before using it.
4285  */
4286 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4287 {
4288  switch (index) {
4289  case MSR_IA32_MCG_EXT_CTL:
4291  return false;
4292  case MSR_IA32_SMBASE:
4293  if (!IS_ENABLED(CONFIG_KVM_SMM))
4294  return false;
4295  /* SEV-ES guests do not support SMM, so report false */
4296  if (kvm && sev_es_guest(kvm))
4297  return false;
4298  break;
4299  default:
4300  break;
4301  }
4302 
4303  return true;
4304 }
4305 
4306 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4307 {
4308  struct vcpu_svm *svm = to_svm(vcpu);
4309 
4310  /*
4311  * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4312  * can only disable all variants of by disallowing CR4.OSXSAVE from
4313  * being set. As a result, if the host has XSAVE and XSAVES, and the
4314  * guest has XSAVE enabled, the guest can execute XSAVES without
4315  * faulting. Treat XSAVES as enabled in this case regardless of
4316  * whether it's advertised to the guest so that KVM context switches
4317  * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4318  * the guest read/write access to the host's XSS.
4319  */
4320  if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4321  boot_cpu_has(X86_FEATURE_XSAVES) &&
4322  guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4323  kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4324 
4325  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4326  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4327  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4328 
4329  /*
4330  * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4331  * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4332  * SVM on Intel is bonkers and extremely unlikely to work).
4333  */
4334  if (!guest_cpuid_is_intel(vcpu))
4335  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4336 
4337  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4338  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4339  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4340  kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4341 
4343 
4344  if (boot_cpu_has(X86_FEATURE_IBPB))
4345  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4347 
4348  if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4349  set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4350  !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4351 
4352  if (sev_guest(vcpu->kvm))
4354 
4356 }
4357 
4358 static bool svm_has_wbinvd_exit(void)
4359 {
4360  return true;
4361 }
4362 
4363 #define PRE_EX(exit) { .exit_code = (exit), \
4364  .stage = X86_ICPT_PRE_EXCEPT, }
4365 #define POST_EX(exit) { .exit_code = (exit), \
4366  .stage = X86_ICPT_POST_EXCEPT, }
4367 #define POST_MEM(exit) { .exit_code = (exit), \
4368  .stage = X86_ICPT_POST_MEMACCESS, }
4369 
4370 static const struct __x86_intercept {
4373 } x86_intercept_map[] = {
4374  [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4375  [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4376  [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4377  [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4378  [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4379  [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4380  [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4381  [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4382  [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4383  [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4384  [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4385  [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4386  [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4387  [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4388  [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4389  [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4390  [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4391  [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4392  [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4393  [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4394  [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4395  [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4396  [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4397  [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4398  [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4399  [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4400  [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4401  [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4402  [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4403  [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4404  [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4405  [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4406  [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4407  [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4408  [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4409  [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4410  [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4411  [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4412  [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4413  [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4414  [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4415  [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4416  [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4417  [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4418  [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4419  [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4420  [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4421 };
4422 
4423 #undef PRE_EX
4424 #undef POST_EX
4425 #undef POST_MEM
4426 
4427 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4428  struct x86_instruction_info *info,
4429  enum x86_intercept_stage stage,
4430  struct x86_exception *exception)
4431 {
4432  struct vcpu_svm *svm = to_svm(vcpu);
4433  int vmexit, ret = X86EMUL_CONTINUE;
4434  struct __x86_intercept icpt_info;
4435  struct vmcb *vmcb = svm->vmcb;
4436 
4437  if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4438  goto out;
4439 
4440  icpt_info = x86_intercept_map[info->intercept];
4441 
4442  if (stage != icpt_info.stage)
4443  goto out;
4444 
4445  switch (icpt_info.exit_code) {
4446  case SVM_EXIT_READ_CR0:
4447  if (info->intercept == x86_intercept_cr_read)
4448  icpt_info.exit_code += info->modrm_reg;
4449  break;
4450  case SVM_EXIT_WRITE_CR0: {
4451  unsigned long cr0, val;
4452 
4453  if (info->intercept == x86_intercept_cr_write)
4454  icpt_info.exit_code += info->modrm_reg;
4455 
4456  if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4457  info->intercept == x86_intercept_clts)
4458  break;
4459 
4460  if (!(vmcb12_is_intercept(&svm->nested.ctl,
4461  INTERCEPT_SELECTIVE_CR0)))
4462  break;
4463 
4464  cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4465  val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4466 
4467  if (info->intercept == x86_intercept_lmsw) {
4468  cr0 &= 0xfUL;
4469  val &= 0xfUL;
4470  /* lmsw can't clear PE - catch this here */
4471  if (cr0 & X86_CR0_PE)
4472  val |= X86_CR0_PE;
4473  }
4474 
4475  if (cr0 ^ val)
4476  icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4477 
4478  break;
4479  }
4480  case SVM_EXIT_READ_DR0:
4481  case SVM_EXIT_WRITE_DR0:
4482  icpt_info.exit_code += info->modrm_reg;
4483  break;
4484  case SVM_EXIT_MSR:
4485  if (info->intercept == x86_intercept_wrmsr)
4486  vmcb->control.exit_info_1 = 1;
4487  else
4488  vmcb->control.exit_info_1 = 0;
4489  break;
4490  case SVM_EXIT_PAUSE:
4491  /*
4492  * We get this for NOP only, but pause
4493  * is rep not, check this here
4494  */
4495  if (info->rep_prefix != REPE_PREFIX)
4496  goto out;
4497  break;
4498  case SVM_EXIT_IOIO: {
4499  u64 exit_info;
4500  u32 bytes;
4501 
4502  if (info->intercept == x86_intercept_in ||
4503  info->intercept == x86_intercept_ins) {
4504  exit_info = ((info->src_val & 0xffff) << 16) |
4505  SVM_IOIO_TYPE_MASK;
4506  bytes = info->dst_bytes;
4507  } else {
4508  exit_info = (info->dst_val & 0xffff) << 16;
4509  bytes = info->src_bytes;
4510  }
4511 
4512  if (info->intercept == x86_intercept_outs ||
4513  info->intercept == x86_intercept_ins)
4514  exit_info |= SVM_IOIO_STR_MASK;
4515 
4516  if (info->rep_prefix)
4517  exit_info |= SVM_IOIO_REP_MASK;
4518 
4519  bytes = min(bytes, 4u);
4520 
4521  exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4522 
4523  exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4524 
4525  vmcb->control.exit_info_1 = exit_info;
4526  vmcb->control.exit_info_2 = info->next_rip;
4527 
4528  break;
4529  }
4530  default:
4531  break;
4532  }
4533 
4534  /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4535  if (static_cpu_has(X86_FEATURE_NRIPS))
4536  vmcb->control.next_rip = info->next_rip;
4537  vmcb->control.exit_code = icpt_info.exit_code;
4538  vmexit = nested_svm_exit_handled(svm);
4539 
4540  ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4541  : X86EMUL_CONTINUE;
4542 
4543 out:
4544  return ret;
4545 }
4546 
4547 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4548 {
4549  if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4550  vcpu->arch.at_instruction_boundary = true;
4551 }
4552 
4553 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4554 {
4555  if (!kvm_pause_in_guest(vcpu->kvm))
4556  shrink_ple_window(vcpu);
4557 }
4558 
4559 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4560 {
4561  /* [63:9] are reserved. */
4562  vcpu->arch.mcg_cap &= 0x1ff;
4563 }
4564 
4565 #ifdef CONFIG_KVM_SMM
4566 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4567 {
4568  struct vcpu_svm *svm = to_svm(vcpu);
4569 
4570  /* Per APM Vol.2 15.22.2 "Response to SMI" */
4571  if (!gif_set(svm))
4572  return true;
4573 
4574  return is_smm(vcpu);
4575 }
4576 
4577 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4578 {
4579  struct vcpu_svm *svm = to_svm(vcpu);
4580  if (svm->nested.nested_run_pending)
4581  return -EBUSY;
4582 
4583  if (svm_smi_blocked(vcpu))
4584  return 0;
4585 
4586  /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4587  if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4588  return -EBUSY;
4589 
4590  return 1;
4591 }
4592 
4593 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4594 {
4595  struct vcpu_svm *svm = to_svm(vcpu);
4596  struct kvm_host_map map_save;
4597  int ret;
4598 
4599  if (!is_guest_mode(vcpu))
4600  return 0;
4601 
4602  /*
4603  * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4604  * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4605  */
4606 
4607  if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4608  return 1;
4609 
4610  smram->smram64.svm_guest_flag = 1;
4611  smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4612 
4613  svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4614  svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4615  svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4616 
4617  ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4618  if (ret)
4619  return ret;
4620 
4621  /*
4622  * KVM uses VMCB01 to store L1 host state while L2 runs but
4623  * VMCB01 is going to be used during SMM and thus the state will
4624  * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4625  * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4626  * format of the area is identical to guest save area offsetted
4627  * by 0x400 (matches the offset of 'struct vmcb_save_area'
4628  * within 'struct vmcb'). Note: HSAVE area may also be used by
4629  * L1 hypervisor to save additional host context (e.g. KVM does
4630  * that, see svm_prepare_switch_to_guest()) which must be
4631  * preserved.
4632  */
4633  if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4634  return 1;
4635 
4636  BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4637 
4638  svm_copy_vmrun_state(map_save.hva + 0x400,
4639  &svm->vmcb01.ptr->save);
4640 
4641  kvm_vcpu_unmap(vcpu, &map_save, true);
4642  return 0;
4643 }
4644 
4645 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4646 {
4647  struct vcpu_svm *svm = to_svm(vcpu);
4648  struct kvm_host_map map, map_save;
4649  struct vmcb *vmcb12;
4650  int ret;
4651 
4652  const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4653 
4654  if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4655  return 0;
4656 
4657  /* Non-zero if SMI arrived while vCPU was in guest mode. */
4658  if (!smram64->svm_guest_flag)
4659  return 0;
4660 
4661  if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4662  return 1;
4663 
4664  if (!(smram64->efer & EFER_SVME))
4665  return 1;
4666 
4667  if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4668  return 1;
4669 
4670  ret = 1;
4671  if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4672  goto unmap_map;
4673 
4674  if (svm_allocate_nested(svm))
4675  goto unmap_save;
4676 
4677  /*
4678  * Restore L1 host state from L1 HSAVE area as VMCB01 was
4679  * used during SMM (see svm_enter_smm())
4680  */
4681 
4682  svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4683 
4684  /*
4685  * Enter the nested guest now
4686  */
4687 
4689 
4690  vmcb12 = map.hva;
4691  nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4692  nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4693  ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4694 
4695  if (ret)
4696  goto unmap_save;
4697 
4698  svm->nested.nested_run_pending = 1;
4699 
4700 unmap_save:
4701  kvm_vcpu_unmap(vcpu, &map_save, true);
4702 unmap_map:
4703  kvm_vcpu_unmap(vcpu, &map, true);
4704  return ret;
4705 }
4706 
4707 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4708 {
4709  struct vcpu_svm *svm = to_svm(vcpu);
4710 
4711  if (!gif_set(svm)) {
4712  if (vgif)
4713  svm_set_intercept(svm, INTERCEPT_STGI);
4714  /* STGI will cause a vm exit */
4715  } else {
4716  /* We must be in SMM; RSM will cause a vmexit anyway. */
4717  }
4718 }
4719 #endif
4720 
4721 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4722  void *insn, int insn_len)
4723 {
4724  bool smep, smap, is_user;
4725  u64 error_code;
4726 
4727  /* Emulation is always possible when KVM has access to all guest state. */
4728  if (!sev_guest(vcpu->kvm))
4729  return X86EMUL_CONTINUE;
4730 
4731  /* #UD and #GP should never be intercepted for SEV guests. */
4732  WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4733  EMULTYPE_TRAP_UD_FORCED |
4734  EMULTYPE_VMWARE_GP));
4735 
4736  /*
4737  * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4738  * to guest register state.
4739  */
4740  if (sev_es_guest(vcpu->kvm))
4741  return X86EMUL_RETRY_INSTR;
4742 
4743  /*
4744  * Emulation is possible if the instruction is already decoded, e.g.
4745  * when completing I/O after returning from userspace.
4746  */
4747  if (emul_type & EMULTYPE_NO_DECODE)
4748  return X86EMUL_CONTINUE;
4749 
4750  /*
4751  * Emulation is possible for SEV guests if and only if a prefilled
4752  * buffer containing the bytes of the intercepted instruction is
4753  * available. SEV guest memory is encrypted with a guest specific key
4754  * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4755  * decode garbage.
4756  *
4757  * If KVM is NOT trying to simply skip an instruction, inject #UD if
4758  * KVM reached this point without an instruction buffer. In practice,
4759  * this path should never be hit by a well-behaved guest, e.g. KVM
4760  * doesn't intercept #UD or #GP for SEV guests, but this path is still
4761  * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4762  * access, and needs to be handled by KVM to avoid putting the guest
4763  * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4764  * its the least awful option given lack of insight into the guest.
4765  *
4766  * If KVM is trying to skip an instruction, simply resume the guest.
4767  * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4768  * will attempt to re-inject the INT3/INTO and skip the instruction.
4769  * In that scenario, retrying the INT3/INTO and hoping the guest will
4770  * make forward progress is the only option that has a chance of
4771  * success (and in practice it will work the vast majority of the time).
4772  */
4773  if (unlikely(!insn)) {
4774  if (emul_type & EMULTYPE_SKIP)
4775  return X86EMUL_UNHANDLEABLE;
4776 
4777  kvm_queue_exception(vcpu, UD_VECTOR);
4778  return X86EMUL_PROPAGATE_FAULT;
4779  }
4780 
4781  /*
4782  * Emulate for SEV guests if the insn buffer is not empty. The buffer
4783  * will be empty if the DecodeAssist microcode cannot fetch bytes for
4784  * the faulting instruction because the code fetch itself faulted, e.g.
4785  * the guest attempted to fetch from emulated MMIO or a guest page
4786  * table used to translate CS:RIP resides in emulated MMIO.
4787  */
4788  if (likely(insn_len))
4789  return X86EMUL_CONTINUE;
4790 
4791  /*
4792  * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4793  *
4794  * Errata:
4795  * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4796  * possible that CPU microcode implementing DecodeAssist will fail to
4797  * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4798  * be '0'. This happens because microcode reads CS:RIP using a _data_
4799  * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4800  * gives up and does not fill the instruction bytes buffer.
4801  *
4802  * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4803  * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4804  * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4805  * GuestIntrBytes field of the VMCB.
4806  *
4807  * This does _not_ mean that the erratum has been encountered, as the
4808  * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4809  * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4810  * encountered a reserved/not-present #PF.
4811  *
4812  * To hit the erratum, the following conditions must be true:
4813  * 1. CR4.SMAP=1 (obviously).
4814  * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4815  * have been hit as the guest would have encountered a SMEP
4816  * violation #PF, not a #NPF.
4817  * 3. The #NPF is not due to a code fetch, in which case failure to
4818  * retrieve the instruction bytes is legitimate (see abvoe).
4819  *
4820  * In addition, don't apply the erratum workaround if the #NPF occurred
4821  * while translating guest page tables (see below).
4822  */
4823  error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4824  if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4825  goto resume_guest;
4826 
4827  smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4828  smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4829  is_user = svm_get_cpl(vcpu) == 3;
4830  if (smap && (!smep || is_user)) {
4831  pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4832 
4833  /*
4834  * If the fault occurred in userspace, arbitrarily inject #GP
4835  * to avoid killing the guest and to hopefully avoid confusing
4836  * the guest kernel too much, e.g. injecting #PF would not be
4837  * coherent with respect to the guest's page tables. Request
4838  * triple fault if the fault occurred in the kernel as there's
4839  * no fault that KVM can inject without confusing the guest.
4840  * In practice, the triple fault is moot as no sane SEV kernel
4841  * will execute from user memory while also running with SMAP=1.
4842  */
4843  if (is_user)
4844  kvm_inject_gp(vcpu, 0);
4845  else
4846  kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4847  return X86EMUL_PROPAGATE_FAULT;
4848  }
4849 
4850 resume_guest:
4851  /*
4852  * If the erratum was not hit, simply resume the guest and let it fault
4853  * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4854  * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4855  * userspace will kill the guest, and letting the emulator read garbage
4856  * will yield random behavior and potentially corrupt the guest.
4857  *
4858  * Simply resuming the guest is technically not a violation of the SEV
4859  * architecture. AMD's APM states that all code fetches and page table
4860  * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4861  * APM also states that encrypted accesses to MMIO are "ignored", but
4862  * doesn't explicitly define "ignored", i.e. doing nothing and letting
4863  * the guest spin is technically "ignoring" the access.
4864  */
4865  return X86EMUL_RETRY_INSTR;
4866 }
4867 
4868 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4869 {
4870  struct vcpu_svm *svm = to_svm(vcpu);
4871 
4872  return !gif_set(svm);
4873 }
4874 
4875 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4876 {
4877  if (!sev_es_guest(vcpu->kvm))
4878  return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4879 
4881 }
4882 
4883 static void svm_vm_destroy(struct kvm *kvm)
4884 {
4885  avic_vm_destroy(kvm);
4886  sev_vm_destroy(kvm);
4887 }
4888 
4889 static int svm_vm_init(struct kvm *kvm)
4890 {
4892  kvm->arch.pause_in_guest = true;
4893 
4894  if (enable_apicv) {
4895  int ret = avic_vm_init(kvm);
4896  if (ret)
4897  return ret;
4898  }
4899 
4900  return 0;
4901 }
4902 
4903 static struct kvm_x86_ops svm_x86_ops __initdata = {
4904  .name = KBUILD_MODNAME,
4905 
4906  .check_processor_compatibility = svm_check_processor_compat,
4907 
4908  .hardware_unsetup = svm_hardware_unsetup,
4909  .hardware_enable = svm_hardware_enable,
4910  .hardware_disable = svm_hardware_disable,
4911  .has_emulated_msr = svm_has_emulated_msr,
4912 
4913  .vcpu_create = svm_vcpu_create,
4914  .vcpu_free = svm_vcpu_free,
4915  .vcpu_reset = svm_vcpu_reset,
4916 
4917  .vm_size = sizeof(struct kvm_svm),
4918  .vm_init = svm_vm_init,
4919  .vm_destroy = svm_vm_destroy,
4920 
4921  .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4922  .vcpu_load = svm_vcpu_load,
4923  .vcpu_put = svm_vcpu_put,
4924  .vcpu_blocking = avic_vcpu_blocking,
4925  .vcpu_unblocking = avic_vcpu_unblocking,
4926 
4927  .update_exception_bitmap = svm_update_exception_bitmap,
4928  .get_msr_feature = svm_get_msr_feature,
4929  .get_msr = svm_get_msr,
4930  .set_msr = svm_set_msr,
4931  .get_segment_base = svm_get_segment_base,
4932  .get_segment = svm_get_segment,
4933  .set_segment = svm_set_segment,
4934  .get_cpl = svm_get_cpl,
4935  .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4936  .is_valid_cr0 = svm_is_valid_cr0,
4937  .set_cr0 = svm_set_cr0,
4938  .post_set_cr3 = sev_post_set_cr3,
4939  .is_valid_cr4 = svm_is_valid_cr4,
4940  .set_cr4 = svm_set_cr4,
4941  .set_efer = svm_set_efer,
4942  .get_idt = svm_get_idt,
4943  .set_idt = svm_set_idt,
4944  .get_gdt = svm_get_gdt,
4945  .set_gdt = svm_set_gdt,
4946  .set_dr7 = svm_set_dr7,
4947  .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4948  .cache_reg = svm_cache_reg,
4949  .get_rflags = svm_get_rflags,
4950  .set_rflags = svm_set_rflags,
4951  .get_if_flag = svm_get_if_flag,
4952 
4953  .flush_tlb_all = svm_flush_tlb_all,
4954  .flush_tlb_current = svm_flush_tlb_current,
4955  .flush_tlb_gva = svm_flush_tlb_gva,
4956  .flush_tlb_guest = svm_flush_tlb_asid,
4957 
4958  .vcpu_pre_run = svm_vcpu_pre_run,
4959  .vcpu_run = svm_vcpu_run,
4960  .handle_exit = svm_handle_exit,
4961  .skip_emulated_instruction = svm_skip_emulated_instruction,
4962  .update_emulated_instruction = NULL,
4963  .set_interrupt_shadow = svm_set_interrupt_shadow,
4964  .get_interrupt_shadow = svm_get_interrupt_shadow,
4965  .patch_hypercall = svm_patch_hypercall,
4966  .inject_irq = svm_inject_irq,
4967  .inject_nmi = svm_inject_nmi,
4968  .is_vnmi_pending = svm_is_vnmi_pending,
4969  .set_vnmi_pending = svm_set_vnmi_pending,
4970  .inject_exception = svm_inject_exception,
4971  .cancel_injection = svm_cancel_injection,
4972  .interrupt_allowed = svm_interrupt_allowed,
4973  .nmi_allowed = svm_nmi_allowed,
4974  .get_nmi_mask = svm_get_nmi_mask,
4975  .set_nmi_mask = svm_set_nmi_mask,
4976  .enable_nmi_window = svm_enable_nmi_window,
4977  .enable_irq_window = svm_enable_irq_window,
4978  .update_cr8_intercept = svm_update_cr8_intercept,
4979  .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4980  .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4981  .apicv_post_state_restore = avic_apicv_post_state_restore,
4982  .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4983 
4984  .get_exit_info = svm_get_exit_info,
4985 
4986  .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4987 
4988  .has_wbinvd_exit = svm_has_wbinvd_exit,
4989 
4990  .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4991  .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4992  .write_tsc_offset = svm_write_tsc_offset,
4993  .write_tsc_multiplier = svm_write_tsc_multiplier,
4994 
4995  .load_mmu_pgd = svm_load_mmu_pgd,
4996 
4997  .check_intercept = svm_check_intercept,
4998  .handle_exit_irqoff = svm_handle_exit_irqoff,
4999 
5000  .request_immediate_exit = __kvm_request_immediate_exit,
5001 
5002  .sched_in = svm_sched_in,
5003 
5004  .nested_ops = &svm_nested_ops,
5005 
5006  .deliver_interrupt = svm_deliver_interrupt,
5007  .pi_update_irte = avic_pi_update_irte,
5008  .setup_mce = svm_setup_mce,
5009 
5010 #ifdef CONFIG_KVM_SMM
5011  .smi_allowed = svm_smi_allowed,
5012  .enter_smm = svm_enter_smm,
5013  .leave_smm = svm_leave_smm,
5014  .enable_smi_window = svm_enable_smi_window,
5015 #endif
5016 
5017  .mem_enc_ioctl = sev_mem_enc_ioctl,
5018  .mem_enc_register_region = sev_mem_enc_register_region,
5019  .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5020  .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5021 
5022  .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5023  .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5024 
5025  .check_emulate_instruction = svm_check_emulate_instruction,
5026 
5027  .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5028 
5029  .msr_filter_changed = svm_msr_filter_changed,
5030  .complete_emulated_msr = svm_complete_emulated_msr,
5031 
5032  .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5033  .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5034 };
5035 
5036 /*
5037  * The default MMIO mask is a single bit (excluding the present bit),
5038  * which could conflict with the memory encryption bit. Check for
5039  * memory encryption support and override the default MMIO mask if
5040  * memory encryption is enabled.
5041  */
5042 static __init void svm_adjust_mmio_mask(void)
5043 {
5044  unsigned int enc_bit, mask_bit;
5045  u64 msr, mask;
5046 
5047  /* If there is no memory encryption support, use existing mask */
5048  if (cpuid_eax(0x80000000) < 0x8000001f)
5049  return;
5050 
5051  /* If memory encryption is not enabled, use existing mask */
5052  rdmsrl(MSR_AMD64_SYSCFG, msr);
5053  if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5054  return;
5055 
5056  enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5057  mask_bit = boot_cpu_data.x86_phys_bits;
5058 
5059  /* Increment the mask bit if it is the same as the encryption bit */
5060  if (enc_bit == mask_bit)
5061  mask_bit++;
5062 
5063  /*
5064  * If the mask bit location is below 52, then some bits above the
5065  * physical addressing limit will always be reserved, so use the
5066  * rsvd_bits() function to generate the mask. This mask, along with
5067  * the present bit, will be used to generate a page fault with
5068  * PFER.RSV = 1.
5069  *
5070  * If the mask bit location is 52 (or above), then clear the mask.
5071  */
5072  mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5073 
5075 }
5076 
5077 static __init void svm_set_cpu_caps(void)
5078 {
5079  kvm_set_cpu_caps();
5080 
5082  kvm_caps.supported_xss = 0;
5083 
5084  /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5085  if (nested) {
5086  kvm_cpu_cap_set(X86_FEATURE_SVM);
5087  kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5088 
5089  /*
5090  * KVM currently flushes TLBs on *every* nested SVM transition,
5091  * and so for all intents and purposes KVM supports flushing by
5092  * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5093  */
5094  kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5095 
5096  if (nrips)
5097  kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5098 
5099  if (npt_enabled)
5100  kvm_cpu_cap_set(X86_FEATURE_NPT);
5101 
5102  if (tsc_scaling)
5103  kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5104 
5105  if (vls)
5106  kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5107  if (lbrv)
5108  kvm_cpu_cap_set(X86_FEATURE_LBRV);
5109 
5110  if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5111  kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5112 
5113  if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5114  kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5115 
5116  if (vgif)
5117  kvm_cpu_cap_set(X86_FEATURE_VGIF);
5118 
5119  if (vnmi)
5120  kvm_cpu_cap_set(X86_FEATURE_VNMI);
5121 
5122  /* Nested VM can receive #VMEXIT instead of triggering #GP */
5123  kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5124  }
5125 
5126  /* CPUID 0x80000008 */
5127  if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5128  boot_cpu_has(X86_FEATURE_AMD_SSBD))
5129  kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5130 
5131  if (enable_pmu) {
5132  /*
5133  * Enumerate support for PERFCTR_CORE if and only if KVM has
5134  * access to enough counters to virtualize "core" support,
5135  * otherwise limit vPMU support to the legacy number of counters.
5136  */
5137  if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5138  kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5139  kvm_pmu_cap.num_counters_gp);
5140  else
5141  kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5142 
5143  if (kvm_pmu_cap.version != 2 ||
5144  !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5145  kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5146  }
5147 
5148  /* CPUID 0x8000001F (SME/SEV features) */
5149  sev_set_cpu_caps();
5150 }
5151 
5152 static __init int svm_hardware_setup(void)
5153 {
5154  int cpu;
5155  struct page *iopm_pages;
5156  void *iopm_va;
5157  int r;
5158  unsigned int order = get_order(IOPM_SIZE);
5159 
5160  /*
5161  * NX is required for shadow paging and for NPT if the NX huge pages
5162  * mitigation is enabled.
5163  */
5164  if (!boot_cpu_has(X86_FEATURE_NX)) {
5165  pr_err_ratelimited("NX (Execute Disable) not supported\n");
5166  return -EOPNOTSUPP;
5167  }
5168  kvm_enable_efer_bits(EFER_NX);
5169 
5170  iopm_pages = alloc_pages(GFP_KERNEL, order);
5171 
5172  if (!iopm_pages)
5173  return -ENOMEM;
5174 
5175  iopm_va = page_address(iopm_pages);
5176  memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5177  iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5178 
5180 
5181  kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5182  XFEATURE_MASK_BNDCSR);
5183 
5184  if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5185  kvm_enable_efer_bits(EFER_FFXSR);
5186 
5187  if (tsc_scaling) {
5188  if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5189  tsc_scaling = false;
5190  } else {
5191  pr_info("TSC scaling supported\n");
5192  kvm_caps.has_tsc_control = true;
5193  }
5194  }
5195  kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5197 
5198  tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5199 
5200  if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5201  kvm_enable_efer_bits(EFER_AUTOIBRS);
5202 
5203  /* Check for pause filtering support */
5204  if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5205  pause_filter_count = 0;
5206  pause_filter_thresh = 0;
5207  } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5208  pause_filter_thresh = 0;
5209  }
5210 
5211  if (nested) {
5212  pr_info("Nested Virtualization enabled\n");
5213  kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5214  }
5215 
5216  /*
5217  * KVM's MMU doesn't support using 2-level paging for itself, and thus
5218  * NPT isn't supported if the host is using 2-level paging since host
5219  * CR4 is unchanged on VMRUN.
5220  */
5221  if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5222  npt_enabled = false;
5223 
5224  if (!boot_cpu_has(X86_FEATURE_NPT))
5225  npt_enabled = false;
5226 
5227  /* Force VM NPT level equal to the host's paging level */
5229  get_npt_level(), PG_LEVEL_1G);
5230  pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5231 
5232  /* Setup shadow_me_value and shadow_me_mask */
5233  kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5234 
5236 
5237  nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5238 
5239  /*
5240  * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5241  * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5242  */
5244 
5246 
5247  for_each_possible_cpu(cpu) {
5248  r = svm_cpu_init(cpu);
5249  if (r)
5250  goto err;
5251  }
5252 
5254 
5255  if (!enable_apicv) {
5256  svm_x86_ops.vcpu_blocking = NULL;
5257  svm_x86_ops.vcpu_unblocking = NULL;
5258  svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5259  } else if (!x2avic_enabled) {
5260  svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5261  }
5262 
5263  if (vls) {
5264  if (!npt_enabled ||
5265  !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5266  !IS_ENABLED(CONFIG_X86_64)) {
5267  vls = false;
5268  } else {
5269  pr_info("Virtual VMLOAD VMSAVE supported\n");
5270  }
5271  }
5272 
5273  if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5274  svm_gp_erratum_intercept = false;
5275 
5276  if (vgif) {
5277  if (!boot_cpu_has(X86_FEATURE_VGIF))
5278  vgif = false;
5279  else
5280  pr_info("Virtual GIF supported\n");
5281  }
5282 
5283  vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5284  if (vnmi)
5285  pr_info("Virtual NMI enabled\n");
5286 
5287  if (!vnmi) {
5288  svm_x86_ops.is_vnmi_pending = NULL;
5289  svm_x86_ops.set_vnmi_pending = NULL;
5290  }
5291 
5292 
5293  if (lbrv) {
5294  if (!boot_cpu_has(X86_FEATURE_LBRV))
5295  lbrv = false;
5296  else
5297  pr_info("LBR virtualization supported\n");
5298  }
5299 
5300  if (!enable_pmu)
5301  pr_info("PMU virtualization is disabled\n");
5302 
5303  svm_set_cpu_caps();
5304 
5305  /*
5306  * It seems that on AMD processors PTE's accessed bit is
5307  * being set by the CPU hardware before the NPF vmexit.
5308  * This is not expected behaviour and our tests fail because
5309  * of it.
5310  * A workaround here is to disable support for
5311  * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5312  * In this case userspace can know if there is support using
5313  * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5314  * it
5315  * If future AMD CPU models change the behaviour described above,
5316  * this variable can be changed accordingly
5317  */
5319 
5320  return 0;
5321 
5322 err:
5324  return r;
5325 }
5326 
5327 
5328 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5329  .hardware_setup = svm_hardware_setup,
5330 
5331  .runtime_ops = &svm_x86_ops,
5332  .pmu_ops = &amd_pmu_ops,
5333 };
5334 
5335 static void __svm_exit(void)
5336 {
5338 
5339  cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5340 }
5341 
5342 static int __init svm_init(void)
5343 {
5344  int r;
5345 
5346  __unused_size_checks();
5347 
5348  if (!kvm_is_svm_supported())
5349  return -EOPNOTSUPP;
5350 
5351  r = kvm_x86_vendor_init(&svm_init_ops);
5352  if (r)
5353  return r;
5354 
5355  cpu_emergency_register_virt_callback(svm_emergency_disable);
5356 
5357  /*
5358  * Common KVM initialization _must_ come last, after this, /dev/kvm is
5359  * exposed to userspace!
5360  */
5361  r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5362  THIS_MODULE);
5363  if (r)
5364  goto err_kvm_init;
5365 
5366  return 0;
5367 
5368 err_kvm_init:
5369  __svm_exit();
5370  return r;
5371 }
5372 
5373 static void __exit svm_exit(void)
5374 {
5375  kvm_exit();
5376  __svm_exit();
5377 }
5378 
void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
Definition: avic.c:1153
int avic_vm_init(struct kvm *kvm)
Definition: avic.c:192
int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
Definition: avic.c:693
int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set)
Definition: avic.c:894
void avic_vm_destroy(struct kvm *kvm)
Definition: avic.c:174
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
Definition: avic.c:244
void avic_vcpu_put(struct kvm_vcpu *vcpu)
Definition: avic.c:1072
int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
Definition: avic.c:490
void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
Definition: avic.c:1112
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
Definition: avic.c:1028
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
Definition: avic.c:1174
int avic_init_vcpu(struct vcpu_svm *svm)
Definition: avic.c:719
void avic_ring_doorbell(struct kvm_vcpu *vcpu)
Definition: avic.c:321
bool x2avic_enabled
Definition: avic.c:75
bool avic_hardware_setup(void)
Definition: avic.c:1188
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
Definition: avic.c:738
unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
Definition: avic.c:542
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
Definition: avic.c:1136
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
Definition: cpuid.c:1583
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
Definition: cpuid.c:309
void kvm_set_cpu_caps(void)
Definition: cpuid.c:585
static int guest_cpuid_model(struct kvm_vcpu *vcpu)
Definition: cpuid.h:144
static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
Definition: cpuid.h:226
static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
Definition: cpuid.h:56
static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
Definition: cpuid.h:221
static bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu)
Definition: cpuid.h:179
static __always_inline void kvm_governed_feature_set(struct kvm_vcpu *vcpu, unsigned int x86_feature)
Definition: cpuid.h:262
static bool guest_cpuid_is_intel(struct kvm_vcpu *vcpu)
Definition: cpuid.h:115
static __always_inline void kvm_governed_feature_check_and_set(struct kvm_vcpu *vcpu, unsigned int x86_feature)
Definition: cpuid.h:271
static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
Definition: cpuid.h:197
static __always_inline bool guest_can_use(struct kvm_vcpu *vcpu, unsigned int x86_feature)
Definition: cpuid.h:278
static bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu)
Definition: cpuid.h:171
static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu, unsigned int x86_feature)
Definition: cpuid.h:83
static int guest_cpuid_family(struct kvm_vcpu *vcpu)
Definition: cpuid.h:133
static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
Definition: cpuid.h:205
static void kvm_hv_vcpu_purge_flush_tlb(struct kvm_vcpu *vcpu)
Definition: hyperv.h:288
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v)
Definition: irq.c:82
static void kvm_register_mark_available(struct kvm_vcpu *vcpu, enum kvm_reg reg)
static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu, unsigned long cr4_bit)
static ulong kvm_read_cr0(struct kvm_vcpu *vcpu)
static void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
static ulong kvm_read_cr3(struct kvm_vcpu *vcpu)
static ulong kvm_read_cr4(struct kvm_vcpu *vcpu)
static unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
static bool is_guest_mode(struct kvm_vcpu *vcpu)
#define X86EMUL_PROPAGATE_FAULT
Definition: kvm_emulate.h:85
@ x86_intercept_monitor
Definition: kvm_emulate.h:483
@ x86_intercept_intn
Definition: kvm_emulate.h:466
@ x86_intercept_ins
Definition: kvm_emulate.h:488
@ x86_intercept_clts
Definition: kvm_emulate.h:446
@ x86_intercept_vmsave
Definition: kvm_emulate.h:474
@ x86_intercept_clgi
Definition: kvm_emulate.h:477
@ x86_intercept_wrmsr
Definition: kvm_emulate.h:486
@ x86_intercept_iret
Definition: kvm_emulate.h:465
@ x86_intercept_sldt
Definition: kvm_emulate.h:456
@ x86_intercept_cpuid
Definition: kvm_emulate.h:463
@ x86_intercept_pause
Definition: kvm_emulate.h:468
@ x86_intercept_rdmsr
Definition: kvm_emulate.h:485
@ x86_intercept_pushf
Definition: kvm_emulate.h:461
@ x86_intercept_rsm
Definition: kvm_emulate.h:464
@ x86_intercept_vmrun
Definition: kvm_emulate.h:472
@ x86_intercept_out
Definition: kvm_emulate.h:489
@ x86_intercept_stgi
Definition: kvm_emulate.h:476
@ x86_intercept_icebp
Definition: kvm_emulate.h:481
@ x86_intercept_hlt
Definition: kvm_emulate.h:469
@ x86_intercept_vmload
Definition: kvm_emulate.h:473
@ x86_intercept_lgdt
Definition: kvm_emulate.h:453
@ x86_intercept_vmmcall
Definition: kvm_emulate.h:475
@ x86_intercept_cr_write
Definition: kvm_emulate.h:445
@ x86_intercept_rdtscp
Definition: kvm_emulate.h:479
@ x86_intercept_smsw
Definition: kvm_emulate.h:448
@ x86_intercept_dr_write
Definition: kvm_emulate.h:450
@ x86_intercept_mwait
Definition: kvm_emulate.h:484
@ x86_intercept_popf
Definition: kvm_emulate.h:462
@ x86_intercept_xsetbv
Definition: kvm_emulate.h:491
@ x86_intercept_skinit
Definition: kvm_emulate.h:478
@ x86_intercept_outs
Definition: kvm_emulate.h:490
@ x86_intercept_invlpg
Definition: kvm_emulate.h:470
@ x86_intercept_wbinvd
Definition: kvm_emulate.h:482
@ x86_intercept_invlpga
Definition: kvm_emulate.h:471
@ x86_intercept_dr_read
Definition: kvm_emulate.h:449
@ x86_intercept_sidt
Definition: kvm_emulate.h:452
@ x86_intercept_in
Definition: kvm_emulate.h:487
@ x86_intercept_cr_read
Definition: kvm_emulate.h:444
@ x86_intercept_rdtsc
Definition: kvm_emulate.h:459
@ x86_intercept_lldt
Definition: kvm_emulate.h:455
@ x86_intercept_lidt
Definition: kvm_emulate.h:451
@ x86_intercept_sgdt
Definition: kvm_emulate.h:454
@ x86_intercept_ltr
Definition: kvm_emulate.h:457
@ x86_intercept_str
Definition: kvm_emulate.h:458
@ x86_intercept_lmsw
Definition: kvm_emulate.h:447
@ x86_intercept_rdpmc
Definition: kvm_emulate.h:460
@ x86_intercept_invd
Definition: kvm_emulate.h:467
#define REPE_PREFIX
Definition: kvm_emulate.h:387
#define X86EMUL_UNHANDLEABLE
Definition: kvm_emulate.h:83
#define X86EMUL_CONTINUE
Definition: kvm_emulate.h:81
#define EMULATION_OK
Definition: kvm_emulate.h:506
#define X86EMUL_INTERCEPTED
Definition: kvm_emulate.h:89
x86_intercept_stage
Definition: kvm_emulate.h:435
#define X86EMUL_RETRY_INSTR
Definition: kvm_emulate.h:86
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
Definition: kvm_main.c:6402
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
Definition: kvm_main.c:4056
int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
Definition: kvm_main.c:3152
void kvm_exit(void)
Definition: kvm_main.c:6495
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3931
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
Definition: kvm_main.c:3915
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
Definition: kvm_main.c:3186
void hv_track_root_tdp(struct kvm_vcpu *vcpu, hpa_t root_tdp)
Definition: kvm_onhyperv.c:112
int hv_flush_remote_tlbs(struct kvm *kvm)
Definition: kvm_onhyperv.c:106
void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
Definition: lapic.c:1869
static bool kvm_apic_has_pending_init_or_sipi(struct kvm_vcpu *vcpu)
Definition: lapic.h:231
static void kvm_lapic_set_irr(int vec, struct kvm_lapic *apic)
Definition: lapic.h:164
static bool lapic_in_kernel(struct kvm_vcpu *vcpu)
Definition: lapic.h:186
static bool kvm_vcpu_apicv_active(struct kvm_vcpu *vcpu)
Definition: lapic.h:226
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, void *insn, int insn_len)
Definition: mmu.c:5830
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
Definition: mmu.c:5968
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, u64 fault_address, char *insn, int insn_len)
Definition: mmu.c:4540
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, int tdp_max_root_level, int tdp_huge_page_level)
Definition: mmu.c:6012
#define PT64_ROOT_5LEVEL
Definition: mmu.h:34
static __always_inline u64 rsvd_bits(int s, int e)
Definition: mmu.h:45
#define PT_PRESENT_MASK
Definition: mmu.h:14
#define PT_WRITABLE_MASK
Definition: mmu.h:15
#define PT32E_ROOT_LEVEL
Definition: mmu.h:37
#define PT64_ROOT_4LEVEL
Definition: mmu.h:35
static unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
Definition: mmu.h:144
#define PT_USER_MASK
Definition: mmu.h:16
struct x86_pmu_capability __read_mostly kvm_pmu_cap
Definition: pmu.c:29
struct kvm_pmu_ops amd_pmu_ops
u64 control
Definition: posted_intr.h:16
void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
Definition: sev.c:3015
void sev_hardware_unsetup(void)
Definition: sev.c:2298
int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
Definition: sev.c:1862
unsigned int max_sev_asid
Definition: sev.c:71
int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
Definition: sev.c:2075
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
Definition: sev.c:2963
int sev_cpu_init(struct svm_cpu_data *sd)
Definition: sev.c:2313
int sev_mem_enc_unregister_region(struct kvm *kvm, struct kvm_enc_region *range)
Definition: sev.c:2035
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
Definition: sev.c:3159
void __init sev_hardware_setup(void)
Definition: sev.c:2193
void sev_es_vcpu_reset(struct vcpu_svm *svm)
Definition: sev.c:3108
int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
Definition: sev.c:2857
int sev_mem_enc_register_region(struct kvm *kvm, struct kvm_enc_region *range)
Definition: sev.c:1959
void sev_es_unmap_ghcb(struct vcpu_svm *svm)
Definition: sev.c:2614
void sev_init_vmcb(struct vcpu_svm *svm)
Definition: sev.c:3093
int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
Definition: sev.c:1791
void pre_sev_run(struct vcpu_svm *svm, int cpu)
Definition: sev.c:2646
void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
Definition: sev.c:3119
void sev_guest_memory_reclaimed(struct kvm *kvm)
Definition: sev.c:2365
void __init sev_set_cpu_caps(void)
Definition: sev.c:2185
void sev_vm_destroy(struct kvm *kvm)
Definition: sev.c:2140
void sev_free_vcpu(struct kvm_vcpu *vcpu)
Definition: sev.c:2373
static bool is_smm(struct kvm_vcpu *vcpu)
Definition: smm.h:160
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
Definition: spte.c:414
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
Definition: spte.c:362
enum x86_intercept_stage stage
Definition: svm.c:4372
u32 exit_code
Definition: svm.c:4371
Definition: x86.h:12
u64 default_tsc_scaling_ratio
Definition: x86.h:22
u64 supported_perf_cap
Definition: x86.h:31
u64 supported_xss
Definition: x86.h:30
u64 max_tsc_scaling_ratio
Definition: x86.h:20
u8 tsc_scaling_ratio_frac_bits
Definition: x86.h:18
bool has_tsc_control
Definition: x86.h:14
u64 supported_xcr0
Definition: x86.h:29
struct kvm_vcpu * vcpu
Definition: lapic.h:64
Definition: svm.h:95
uint64_t asid_generation
Definition: svm.h:113
int cpu
Definition: svm.h:112
struct vmcb * ptr
Definition: svm.h:110
unsigned long pa
Definition: svm.h:111
u32 max_asid
Definition: svm.h:299
struct vmcb * current_vmcb
Definition: svm.h:306
unsigned long save_area_pa
Definition: svm.h:304
u32 min_asid
Definition: svm.h:301
u32 next_asid
Definition: svm.h:300
u64 asid_generation
Definition: svm.h:298
struct page * save_area
Definition: svm.h:303
struct vmcb ** sev_vmcbs
Definition: svm.h:309
u64 vm_cr_msr
Definition: svm.h:161
u64 vmcb12_gpa
Definition: svm.h:162
bool nested_run_pending
Definition: svm.h:170
struct vmcb_ctrl_area_cached ctl
Definition: svm.h:173
u64 last_vmcb12_gpa
Definition: svm.h:163
bool force_msr_bitmap_recalc
Definition: svm.h:190
u64 hsave_msr
Definition: svm.h:160
u32 * msrpm
Definition: svm.h:166
struct sev_es_save_area * vmsa
Definition: svm.h:195
struct ghcb * ghcb
Definition: svm.h:196
Definition: svm.h:209
bool nmi_singlestep
Definition: svm.h:257
struct kvm_vmcb_info * current_vmcb
Definition: svm.h:214
u32 * msrpm
Definition: svm.h:234
unsigned long soft_int_old_rip
Definition: svm.h:263
unsigned long soft_int_next_rip
Definition: svm.h:264
u64 tsc_ratio_msr
Definition: svm.h:226
bool guest_state_loaded
Definition: svm.h:289
bool nmi_masked
Definition: svm.h:241
bool nmi_l1_to_l2
Definition: svm.h:260
ulong nmi_iret_rip
Definition: svm.h:236
u32 sysenter_esp_hi
Definition: svm.h:216
u64 virt_spec_ctrl
Definition: svm.h:232
unsigned long soft_int_csbase
Definition: svm.h:262
u32 asid
Definition: svm.h:215
bool soft_int_injected
Definition: svm.h:265
u32 sysenter_eip_hi
Definition: svm.h:217
u64 nmi_singlestep_guest_rflags
Definition: svm.h:258
u64 spec_ctrl
Definition: svm.h:224
struct svm_nested_state nested
Definition: svm.h:238
struct vcpu_svm::@33 shadow_msr_intercept
struct vcpu_sev_es_state sev_es
Definition: svm.h:287
u64 msr_decfg
Definition: svm.h:220
uint64_t tsc_aux
Definition: svm.h:218
bool awaiting_iret_completion
Definition: svm.h:248
struct vmcb * vmcb
Definition: svm.h:212
struct kvm_vmcb_info vmcb01
Definition: svm.h:213
struct kvm_vcpu vcpu
Definition: svm.h:210
u64 next_rip
Definition: svm.h:222
bool x2avic_msrs_intercepted
Definition: svm.h:291
struct kvm_x86_nested_ops svm_nested_ops
Definition: nested.c:1811
void nested_sync_control_from_vmcb02(struct vcpu_svm *svm)
Definition: nested.c:414
int nested_svm_vmrun(struct kvm_vcpu *vcpu)
Definition: nested.c:837
void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm)
Definition: nested.c:528
void svm_free_nested(struct vcpu_svm *svm)
Definition: nested.c:1203
int nested_svm_exit_handled(struct vcpu_svm *svm)
Definition: nested.c:1345
int nested_svm_check_permissions(struct kvm_vcpu *vcpu)
Definition: nested.c:1357
int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa, struct vmcb *vmcb12, bool from_vmrun)
Definition: nested.c:785
int svm_allocate_nested(struct vcpu_svm *svm)
Definition: nested.c:1177
int nested_svm_exit_special(struct vcpu_svm *svm)
Definition: nested.c:1496
void recalc_intercepts(struct vcpu_svm *svm)
Definition: nested.c:122
void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, struct vmcb_control_area *control)
Definition: nested.c:382
void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu)
Definition: nested.c:1532
void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, struct vmcb_save_area *save)
Definition: nested.c:404
void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
Definition: nested.c:951
void svm_copy_vmrun_state(struct vmcb_save_area *to_save, struct vmcb_save_area *from_save)
Definition: nested.c:931
void svm_leave_nested(struct kvm_vcpu *vcpu)
Definition: nested.c:1229
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
Definition: svm.c:3793
static void clr_dr_intercepts(struct vcpu_svm *svm)
Definition: svm.c:748
static int task_switch_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2488
static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
Definition: svm.c:4102
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
Definition: svm.c:1407
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
Definition: svm.c:982
static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, unsigned long val)
Definition: svm.c:2601
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
Definition: svm.c:2826
static int stgi_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2439
static int svm_instr_opcode(struct kvm_vcpu *vcpu)
Definition: svm.c:2312
static void init_msrpm_offsets(void)
Definition: svm.c:966
static bool __kvm_is_svm_supported(void)
Definition: svm.c:520
#define MSRS_RANGE_SIZE
Definition: svm.c:261
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
Definition: svm.c:3942
static void svm_vm_destroy(struct kvm *kvm)
Definition: svm.c:4883
#define SEG_TYPE_LDT
Definition: svm.c:66
static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, struct vcpu_svm *svm)
Definition: svm.c:1172
static void svm_inject_exception(struct kvm_vcpu *vcpu)
Definition: svm.c:457
static void pre_svm_run(struct kvm_vcpu *vcpu)
Definition: svm.c:3533
module_param_named(npt, npt_enabled, bool, 0444)
static DEFINE_PER_CPU(u64, current_tsc_ratio)
static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
Definition: svm.c:1140
static unsigned long iopm_base
Definition: svm.c:245
static int msr_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:3169
bool npt_enabled
Definition: svm.c:198
void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
Definition: svm.c:892
static int get_npt_level(void)
Definition: svm.c:287
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
Definition: svm.c:1852
static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
Definition: svm.c:3588
static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
Definition: svm.c:3813
static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
Definition: svm.c:2333
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
Definition: svm.c:1980
static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, bool commit_side_effects)
Definition: svm.c:369
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, int trig_mode, int vector)
Definition: svm.c:3633
static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, int write)
Definition: svm.c:768
static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
Definition: svm.c:4306
static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
Definition: svm.c:3752
static int intr_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2246
static int vmload_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2286
static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
Definition: svm.c:2252
static int invlpga_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2463
static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
Definition: svm.c:1147
static void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
Definition: svm.c:1195
static bool svm_gp_erratum_intercept
Definition: svm.c:241
static void svm_set_vintr(struct vcpu_svm *svm)
Definition: svm.c:1630
static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, void *insn, int insn_len)
Definition: svm.c:4721
static int skinit_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2480
static int svm_vcpu_create(struct kvm_vcpu *vcpu)
Definition: svm.c:1413
static void init_seg(struct vmcb_seg *seg)
Definition: svm.c:1123
static int shutdown_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2185
static void svm_clear_current_vmcb(struct vmcb *vmcb)
Definition: svm.c:1478
static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
Definition: svm.c:4088
static void svm_setup_mce(struct kvm_vcpu *vcpu)
Definition: svm.c:4559
u32 svm_msrpm_offset(u32 msr)
Definition: svm.c:264
bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
Definition: svm.c:3735
static void svm_vcpu_free(struct kvm_vcpu *vcpu)
Definition: svm.c:1486
static int vls
Definition: svm.c:210
static unsigned short pause_filter_count
Definition: svm.c:179
static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
Definition: svm.c:3490
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Definition: svm.c:1803
static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
Definition: svm.c:4286
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
Definition: svm.c:1132
static bool valid_msr_intercept(u32 index)
Definition: svm.c:789
static int clgi_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2451
static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
Definition: svm.c:1603
static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, int trig_mode, int vector)
Definition: svm.c:3667
static const struct __x86_intercept x86_intercept_map[]
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
Definition: svm.c:4077
static void kvm_cpu_svm_disable(void)
Definition: svm.c:572
static int nmi_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2236
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
Definition: svm.c:1154
static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
Definition: svm.c:3843
static int pf_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2038
static int emulate_on_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2591
static void __svm_exit(void)
Definition: svm.c:5335
void svm_set_gif(struct vcpu_svm *svm, bool value)
Definition: svm.c:2406
static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
Definition: svm.c:4118
static int vmrun_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2296
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
Definition: svm.c:296
static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
Definition: svm.c:4246
static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
Definition: svm.c:4272
static void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
Definition: svm.c:3949
static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
Definition: svm.c:1829
static unsigned short pause_filter_count_grow
Definition: svm.c:183
static bool erratum_383_found __read_mostly
Definition: svm.c:69
static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
Definition: svm.c:1506
static void __svm_write_tsc_multiplier(u64 multiplier)
Definition: svm.c:563
static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
Definition: svm.c:3578
bool __read_mostly dump_invalid_vmcb
Definition: svm.c:231
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
Definition: svm.c:3767
void svm_vcpu_free_msrpm(u32 *msrpm)
Definition: svm.c:915
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
Definition: svm.c:3557
static int invpcid_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:3216
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
Definition: svm.c:3716
static u8 rsm_ins_bytes[]
Definition: svm.c:243
static int direct_access_msr_slot(u32 msr)
Definition: svm.c:757
static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
Definition: svm.c:1377
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
Definition: svm.c:1612
#define MSRS_IN_RANGE
Definition: svm.c:262
static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
Definition: svm.c:1710
static int npf_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2051
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
Definition: svm.c:1394
static int io_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2211
static unsigned short pause_filter_thresh
Definition: svm.c:176
#define POST_EX(exit)
Definition: svm.c:4365
static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write)
Definition: svm.c:822
static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
Definition: svm.c:1909
static int gp_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2366
static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
Definition: svm.c:1937
#define X2APIC_MSR(x)
Definition: svm.c:81
static void set_dr_intercepts(struct vcpu_svm *svm)
Definition: svm.c:724
static void svm_init_osvw(struct kvm_vcpu *vcpu)
Definition: svm.c:499
void disable_nmi_singlestep(struct vcpu_svm *svm)
Definition: svm.c:1054
static int vmsave_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2291
static void add_msr_offset(u32 offset)
Definition: svm.c:939
static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
Definition: svm.c:4093
static void svm_init_erratum_383(void)
Definition: svm.c:475
static int dr_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2734
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
Definition: svm.c:2027
static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
Definition: svm.c:407
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
Definition: svm.c:358
static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
Definition: svm.c:3927
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
Definition: svm.c:3453
MODULE_AUTHOR("Qumranet")
static bool avic
Definition: svm.c:228
bool vnmi
Definition: svm.c:238
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
Definition: svm.c:348
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
Definition: svm.c:2006
static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
Definition: svm.c:2934
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Definition: svm.c:1820
static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
Definition: svm.c:4008
module_param(pause_filter_thresh, ushort, 0444)
static bool svm_has_wbinvd_exit(void)
Definition: svm.c:4358
static int ud_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2109
static void svm_hardware_unsetup(void)
Definition: svm.c:1109
static int mc_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2180
static int rsm_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2596
static struct vmcb * svm_get_lbr_vmcb(struct vcpu_svm *svm)
Definition: svm.c:1026
static uint64_t osvw_len
Definition: svm.c:77
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
Definition: svm.c:794
#define SEG_TYPE_BUSY_TSS16
Definition: svm.c:67
static struct vmcb_seg * svm_seg(struct kvm_vcpu *vcpu, int seg)
Definition: svm.c:1684
static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
Definition: svm.c:3683
static void init_vmcb(struct kvm_vcpu *vcpu)
Definition: svm.c:1227
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
Definition: svm.c:4553
static __init int svm_hardware_setup(void)
Definition: svm.c:5152
static int __init svm_init(void)
Definition: svm.c:5342
static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
Definition: svm.c:1786
static int iret_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2566
static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
Definition: svm.c:1008
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
Definition: svm.c:2973
#define POST_MEM(exit)
Definition: svm.c:4367
static void shrink_ple_window(struct kvm_vcpu *vcpu)
Definition: svm.c:1088
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Definition: svm.c:1812
void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
Definition: svm.c:881
u32 * svm_vcpu_alloc_msrpm(void)
Definition: svm.c:866
static int interrupt_window_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:3177
int vgif
Definition: svm.c:214
static __init void svm_set_cpu_caps(void)
Definition: svm.c:5077
static void grow_ple_window(struct kvm_vcpu *vcpu)
Definition: svm.c:1067
static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
Definition: svm.c:3441
static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
Definition: svm.c:920
static void svm_emergency_disable(void)
Definition: svm.c:588
static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
Definition: svm.c:1847
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
Definition: svm.c:1550
static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
Definition: svm.c:3887
static int nested
Definition: svm.c:202
static int svm_get_msr_feature(struct kvm_msr_entry *msr)
Definition: svm.c:2810
static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
Definition: svm.c:412
static unsigned short pause_filter_count_max
Definition: svm.c:191
static int lbrv
Definition: svm.c:218
#define PRE_EX(exit)
Definition: svm.c:4363
static bool is_erratum_383(void)
Definition: svm.c:2120
static struct kvm_x86_ops svm_x86_ops __initdata
Definition: svm.c:4903
static void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
Definition: svm.c:3962
#define NUM_MSR_MAPS
Definition: svm.c:260
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
Definition: svm.c:3706
static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
Definition: svm.c:4875
static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
Definition: svm.c:3911
static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
Definition: svm.c:4868
static int efer_trap(struct kvm_vcpu *vcpu)
Definition: svm.c:2791
static void svm_hardware_disable(void)
Definition: svm.c:595
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Definition: svm.c:1795
static int svm_hardware_enable(void)
Definition: svm.c:606
static int cr_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2625
static bool kvm_is_svm_supported(void)
Definition: svm.c:544
void svm_update_lbrv(struct kvm_vcpu *vcpu)
Definition: svm.c:1037
static int pause_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:3200
static unsigned short pause_filter_count_shrink
Definition: svm.c:187
static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
Definition: svm.c:1545
static const struct svm_direct_access_msrs direct_access_msrs[MAX_DIRECT_ACCESS_MSRS]
static uint64_t osvw_status
Definition: svm.c:77
static int svm_cpu_init(int cpu)
Definition: svm.c:700
static bool svm_check_exit_valid(u64 exit_code)
Definition: svm.c:3435
static int svm_check_processor_compat(void)
Definition: svm.c:555
static int svm_vm_init(struct kvm *kvm)
Definition: svm.c:4889
MODULE_LICENSE("GPL")
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
Definition: svm.c:1163
static int invlpg_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2582
static int smi_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2241
static int tsc_scaling
Definition: svm.c:221
static void dump_vmcb(struct kvm_vcpu *vcpu)
Definition: svm.c:3312
bool intercept_smi
Definition: svm.c:235
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
Definition: svm.c:2948
static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, int type)
Definition: svm.c:3976
static void svm_cpu_uninit(int cpu)
Definition: svm.c:687
static int svm_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage, struct x86_exception *exception)
Definition: svm.c:4427
static int ac_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2114
static void __exit svm_exit(void)
Definition: svm.c:5373
static int db_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2065
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
Definition: svm.c:1590
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write)
Definition: svm.c:859
static __init void svm_adjust_mmio_mask(void)
Definition: svm.c:5042
static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
Definition: svm.c:3611
static void svm_clear_vintr(struct vcpu_svm *svm)
Definition: svm.c:1663
int nrips
Definition: svm.c:206
static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
Definition: svm.c:1968
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
Definition: svm.c:1575
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
Definition: svm.c:1914
static int svm_get_cpl(struct kvm_vcpu *vcpu)
Definition: svm.c:1779
@ SVM_INSTR_VMRUN
Definition: svm.c:2306
@ SVM_INSTR_VMSAVE
Definition: svm.c:2308
@ SVM_INSTR_VMLOAD
Definition: svm.c:2307
@ NONE_SVM_INSTR
Definition: svm.c:2305
static const u32 msrpm_ranges[]
Definition: svm.c:258
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
Definition: svm.c:1565
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
Definition: svm.c:4547
static void svm_handle_mce(struct kvm_vcpu *vcpu)
Definition: svm.c:2159
static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
Definition: svm.c:993
static int cr8_write_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2776
static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
Definition: svm.c:1993
static void svm_set_iret_intercept(struct vcpu_svm *svm)
Definition: svm.c:2560
static int cr_trap(struct kvm_vcpu *vcpu)
Definition: svm.c:2699
#define CR_VALID
Definition: svm.c:2623
static int(*const svm_exit_handlers[])(struct kvm_vcpu *vcpu)
Definition: svm.c:3238
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
Definition: svm.c:3473
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
Definition: svm.c:1703
static void svm_clr_iret_intercept(struct vcpu_svm *svm)
Definition: svm.c:2554
static int bp_interception(struct kvm_vcpu *vcpu)
Definition: svm.c:2098
static bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
Definition: svm.h:569
#define __sme_page_pa(x)
Definition: svm.h:28
static void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
Definition: svm.h:413
#define MSRPM_SIZE
Definition: svm.h:31
static bool nested_exit_on_intr(struct vcpu_svm *svm)
Definition: svm.h:581
static __always_inline bool sev_es_guest(struct kvm *kvm)
Definition: svm.h:332
static __always_inline bool sev_guest(struct kvm *kvm)
Definition: svm.h:321
static bool svm_is_intercept(struct vcpu_svm *svm, int bit)
Definition: svm.h:441
#define IOPM_SIZE
Definition: svm.h:30
#define SVM_REGS_LAZY_LOAD_SET
Definition: svm.h:377
static void svm_clr_intercept(struct vcpu_svm *svm, int bit)
Definition: svm.h:432
static void vmcb_mark_all_dirty(struct vmcb *vmcb)
Definition: svm.h:343
#define MAX_DIRECT_ACCESS_MSRS
Definition: svm.h:33
static bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit)
Definition: svm.h:397
static bool nested_exit_on_smi(struct vcpu_svm *svm)
Definition: svm.h:576
static void vmcb_mark_all_clean(struct vmcb *vmcb)
Definition: svm.h:348
static bool is_vnmi_enabled(struct vcpu_svm *svm)
Definition: svm.h:524
static void disable_gif(struct vcpu_svm *svm)
Definition: svm.h:473
static int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code)
Definition: svm.h:602
static __always_inline struct vcpu_svm * to_svm(struct kvm_vcpu *vcpu)
Definition: svm.h:364
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
#define NESTED_EXIT_DONE
Definition: svm.h:566
@ VMCB_DT
Definition: svm.h:57
@ VMCB_INTR
Definition: svm.h:53
@ VMCB_CR
Definition: svm.h:55
@ VMCB_NPT
Definition: svm.h:54
@ VMCB_LBR
Definition: svm.h:60
@ VMCB_INTERCEPTS
Definition: svm.h:49
@ VMCB_SEG
Definition: svm.h:58
@ VMCB_DR
Definition: svm.h:56
@ VMCB_ASID
Definition: svm.h:52
static void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
Definition: svm.h:354
void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted)
void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted)
#define NESTED_EXIT_CONTINUE
Definition: svm.h:567
#define DEBUGCTL_RESERVED_BITS
Definition: svm.h:537
static void enable_gif(struct vcpu_svm *svm)
Definition: svm.h:463
#define MSR_INVALID
Definition: svm.h:535
static bool gif_set(struct vcpu_svm *svm)
Definition: svm.h:483
#define MSRPM_OFFSETS
Definition: svm.h:34
static bool nested_exit_on_nmi(struct vcpu_svm *svm)
Definition: svm.h:586
static void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
Definition: svm.h:403
#define AVIC_REQUIRED_APICV_INHIBITS
Definition: svm.h:628
static void svm_set_intercept(struct vcpu_svm *svm, int bit)
Definition: svm.h:423
static void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
Definition: svm.h:379
static __init void svm_hv_hardware_setup(void)
Definition: svm_onhyperv.h:101
static void svm_hv_init_vmcb(struct vmcb *vmcb)
Definition: svm_onhyperv.h:97
static bool svm_hv_is_enlightened_tlb_enabled(struct kvm_vcpu *vcpu)
Definition: svm_onhyperv.h:92
static void svm_hv_vmcb_dirty_nested_enlightenments(struct kvm_vcpu *vcpu)
Definition: svm_onhyperv.h:105
static void svm_hv_update_vp_id(struct vmcb *vmcb, struct kvm_vcpu *vcpu)
Definition: svm_onhyperv.h:110
static __always_inline void vmsave(unsigned long pa)
Definition: svm_ops.h:59
static void clgi(void)
Definition: svm_ops.h:39
static void stgi(void)
Definition: svm_ops.h:44
static void invlpga(unsigned long addr, u32 asid)
Definition: svm_ops.h:49
#define KVM_ISA_SVM
Definition: trace.h:284
#define trace_kvm_cr_read(cr, val)
Definition: trace.h:478
#define trace_kvm_cr_write(cr, val)
Definition: trace.h:479
bool __read_mostly allow_smaller_maxphyaddr
Definition: x86.c:232
module_init(vmx_init)
module_exit(vmx_exit)
int kvm_spec_ctrl_test_value(u64 value)
Definition: x86.c:13532
bool __read_mostly enable_apicv
Definition: x86.c:235
int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
Definition: x86.c:2142
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
Definition: x86.c:830
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
Definition: x86.c:1373
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
Definition: x86.c:4182
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
Definition: x86.c:9358
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
Definition: x86.c:9262
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
Definition: x86.c:1315
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
Definition: x86.c:2082
int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, void *insn, int insn_len)
Definition: x86.c:9057
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
Definition: x86.c:12224
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code)
Definition: x86.c:11657
bool __read_mostly enable_vmware_backdoor
Definition: x86.c:176
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
Definition: x86.c:1327
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
Definition: x86.c:13164
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
Definition: x86.c:1192
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
Definition: x86.c:929
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, void *insn, int insn_len)
Definition: x86.c:9268
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
Definition: x86.c:2119
void kvm_x86_vendor_exit(void)
Definition: x86.c:9798
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
Definition: x86.c:8169
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
Definition: x86.c:1266
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
Definition: x86.c:737
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
Definition: x86.c:12374
bool __read_mostly enable_pmu
Definition: x86.c:192
fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
Definition: x86.c:2185
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, struct kvm_queued_exception *ex)
Definition: x86.c:573
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
Definition: x86.c:9857
int kvm_add_user_return_msr(u32 msr)
Definition: x86.c:404
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
Definition: x86.c:2057
int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
Definition: x86.c:13612
int kvm_emulate_invd(struct kvm_vcpu *vcpu)
Definition: x86.c:2112
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
Definition: x86.c:971
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
Definition: x86.c:824
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
Definition: x86.c:757
void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
Definition: x86.c:1402
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
Definition: x86.c:1119
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
Definition: x86.c:8916
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
Definition: x86.c:10019
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
Definition: x86.c:731
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
Definition: x86.c:1422
int handle_ud(struct kvm_vcpu *vcpu)
Definition: x86.c:7669
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
Definition: x86.c:9941
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload)
Definition: x86.c:743
void kvm_enable_efer_bits(u64 mask)
Definition: x86.c:1790
int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
Definition: x86.c:9786
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
Definition: x86.c:866
bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
Definition: x86.c:1796
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
Definition: x86.c:3737
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
Definition: x86.c:13170
void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
Definition: x86.c:1018
int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
Definition: x86.c:442
void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
Definition: x86.c:10692
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
Definition: x86.c:1150
void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
Definition: x86.c:1041
int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
Definition: x86.c:2136
static unsigned int __grow_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int max)
Definition: x86.h:60
static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
Definition: x86.h:446
static bool kvm_exception_is_soft(unsigned int nr)
Definition: x86.h:133
#define KVM_SVM_DEFAULT_PLE_WINDOW
Definition: x86.h:58
#define KVM_FIRST_EMULATED_VMX_MSR
Definition: x86.h:49
#define KVM_DEFAULT_PLE_WINDOW_SHRINK
Definition: x86.h:55
static bool is_paging(struct kvm_vcpu *vcpu)
Definition: x86.h:198
static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu, enum kvm_intr_type intr)
Definition: x86.h:440
static void kvm_register_write(struct kvm_vcpu *vcpu, int reg, unsigned long val)
Definition: x86.h:280
@ KVM_HANDLING_NMI
Definition: x86.h:437
static bool kvm_mwait_in_guest(struct kvm *kvm)
Definition: x86.h:409
#define KVM_SVM_DEFAULT_PLE_WINDOW_MAX
Definition: x86.h:57
#define KVM_DEFAULT_PLE_WINDOW_GROW
Definition: x86.h:54
static void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
Definition: x86.h:122
static unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
Definition: x86.h:273
static void kvm_machine_check(void)
Definition: x86.h:482
static void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, bool soft)
Definition: x86.h:114
static bool is_long_mode(struct kvm_vcpu *vcpu)
Definition: x86.h:143
static bool kvm_pause_in_guest(struct kvm *kvm)
Definition: x86.h:419
#define KVM_MSR_RET_INVALID
Definition: x86.h:508
#define KVM_DEFAULT_PLE_GAP
Definition: x86.h:52
static void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
Definition: x86.h:377
static void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
Definition: x86.h:107
static bool kvm_hlt_in_guest(struct kvm *kvm)
Definition: x86.h:414
#define KVM_LAST_EMULATED_VMX_MSR
Definition: x86.h:50
static bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
Definition: x86.h:288
static unsigned int __shrink_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int min)
Definition: x86.h:76